I am trying to estimate the constants for Heaps law.
I have the following dataset novels_colection
:
Number of novels DistinctWords WordOccurrences
If you take log transform on both sides of y = K * n ^ B
, you get log(y) = log(K) + B * log(n)
. This is a linear relationship between log(y)
and log(n)
, hence you can fit a linear regression model to find log(K)
and B
.
logy <- log(DistinctWords)
logn <- log(WordOccurrences)
fit <- lm(logy ~ logn)
para <- coef(fit) ## log(K) and B
para[1] <- exp(para[1]) ## K and B
With minpack.lm we can fit a non-linear model but I guess it will be prone to overfitting more than a linear model on the log-transformed variables will do (as done by Zheyuan), but we may compare the residuals of linear / non-linear model on some held-out dataset to get the empirical results, which will be interesting to see.
library(minpack.lm)
fitHeaps = nlsLM(DistinctWords ~ heaps(K, WordOccurrences, B),
data = novels_collection[,2:3],
start = list(K = .01, B = .01))
coef(fitHeaps)
# K B
# 5.0452566 0.6472176
plot(novels_collection$WordOccurrences, novels_collection$DistinctWords, pch=19)
lines(novels_collection$WordOccurrences, predict(fitHeaps, newdata = novels_collection[,2:3]), col='red')