here is one good explained topic on stackoverflow: Replacing few values in a pandas dataframe column with another value
The example is:
BrandName Special
Use regex=True
for subtring replacement:
df['BrandName'] = df['BrandName'].replace(['ABC', 'AB'], 'A', regex=True)
print (df)
BrandName Specialty
0 A H
1 B I
2 A B J
3 D K
4 A L
Another solution is necessary, if need to avoid replacement values in anaother substrings, like ABCD
is not replaced, then need regex words boundaries:
print (df)
BrandName Specialty
0 A ABCD H
1 B I
2 ABC B J
3 D K
4 AB L
L = [r"\b{}\b".format(x) for x in ['ABC', 'AB']]
df['BrandName1'] = df['BrandName'].replace(L, 'A', regex=True)
df['BrandName2'] = df['BrandName'].replace(['ABC', 'AB'], 'A', regex=True)
print (df)
BrandName Specialty BrandName1 BrandName2
0 A ABCD H A ABCD A AD
1 B I B B
2 ABC B J A B A B
3 D K D D
4 AB L A A
Edit(from the questioner):
To speed it up, you can have a look here: Speed up millions of regex replacements in Python 3
The best one is the trie
approach:
def trie_regex_from_words(words):
trie = Trie()
for word in words:
trie.add(word)
return re.compile(r"\b" + trie.pattern() + r"\b", re.IGNORECASE)
union = trie_regex_from_words(strings)
df['BrandName'] = df['BrandName'].replace(union, 'A', regex=True)