I have something like this:
Values Time
22 0
45 1
65 2
78 0
12 1
45 2
and I want this
This is pivot
creating the index with cumcount
df['idx'] = 'Val' + (df.groupby('Time').cumcount()+1).astype(str)
df.pivot(index='idx', columns='Time', values='Values').rename_axis(None)
Output:
Time 0 1 2
Val1 22 45 65
Val2 78 12 45
If your time-delta is constant, ordered and has no missing values:
DELTA = 3
new_values = [df['Values'].iloc[i*DELTA:i*DELTA+DELTA].values.transpose() for i in range(int(len(df)/DELTA))]
df_new = pd.DataFrame(new_values , index=['Val'+str(i+1) for i in range(len(new_values ))])
print(df_new)
0 1 2
Val1 22 45 65
Val2 78 12 45
Not a pretty solution, but maybe it helps. :-)
You need to transpose your array/matrix.
Use
list(map(list, zip(*l)))
where list is your list