I am trying to perform 10 fold cross validation in python. I know how to calculate the confusion matrix and the report for split test(example split 80% training and 20% testing)
Here is a reproducible example with the breast cancer data and 3-fold CV for simplicity:
from sklearn.datasets import load_breast_cancer
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.model_selection import KFold
X, y = load_breast_cancer(return_X_y=True)
n_splits = 3
kf = KFold(n_splits=n_splits, shuffle=True)
model = DecisionTreeClassifier()
for train_index, val_index in kf.split(X):
model.fit(X[train_index], y[train_index])
pred = model.predict(X[val_index])
print(confusion_matrix(y[val_index], pred))
print(classification_report(y[val_index], pred))
The result is 3 confusion matrices & classification reports, one per CV fold:
[[ 63 9]
[ 10 108]]
precision recall f1-score support
0 0.86 0.88 0.87 72
1 0.92 0.92 0.92 118
micro avg 0.90 0.90 0.90 190
macro avg 0.89 0.90 0.89 190
weighted avg 0.90 0.90 0.90 190
[[ 66 8]
[ 6 110]]
precision recall f1-score support
0 0.92 0.89 0.90 74
1 0.93 0.95 0.94 116
micro avg 0.93 0.93 0.93 190
macro avg 0.92 0.92 0.92 190
weighted avg 0.93 0.93 0.93 190
[[ 59 7]
[ 8 115]]
precision recall f1-score support
0 0.88 0.89 0.89 66
1 0.94 0.93 0.94 123
micro avg 0.92 0.92 0.92 189
macro avg 0.91 0.91 0.91 189
weighted avg 0.92 0.92 0.92 189