I have 65 parameters of different bit length which I need to fill in an octet string. Parametrs would be filled continuously in octet string. For example, suppose the first para
You are lucky. Since I love bit twiddling, I wrote a generic implementation of a BitBuffer just for you. I have not tested it thoroughly (e.g. not all nasty corner cases) but as you will see, it passes the simple tests I added to the code below.
#include <assert.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
struct BitBuffer {
unsigned length; // No of bits used in buffer
unsigned capacity; // No of bits available in buffer
uint8_t buffer[];
};
struct BitBuffer * newBitBuffer (
unsigned capacityInBits
) {
int capacityInBytes;
struct BitBuffer * result;
capacityInBytes = (capacityInBits / 8);
if (capacityInBits % 8 != 0) {
capacityInBytes++;
}
result = malloc(sizeof(*result) + capacityInBytes);
if (result) {
result->length = 0;
result->capacity = capacityInBits;
}
return result;
}
bool addBitsToBuffer (
struct BitBuffer * bbuffer, const void * bits, unsigned bitCount
) {
unsigned tmpBuf;
unsigned tmpBufLen;
unsigned tmpBufMask;
uint8_t * nextBufBytePtr;
const uint8_t * nextBitsBytePtr;
// Verify input parameters are sane
if (!bbuffer || !bits) {
// Evil!
return false;
}
if (bitCount == 0) {
// No data to add? Nothing to do.
return true;
}
// Verify we have enough space available
if (bbuffer->length + bitCount > bbuffer->capacity) {
// Won't fit!
return false;
}
// Get the first byte we start writing bits to
nextBufBytePtr = bbuffer->buffer + (bbuffer->length / 8);
// Shortcut:
// If we happen to be at a byte boundary,
// we can simply use memcpy and save us a lot of headache.
if (bbuffer->length % 8 == 0) {
unsigned byteCount;
byteCount = bitCount / 8;
if (bitCount % 8 != 0) {
byteCount++;
}
memcpy(nextBufBytePtr, bits, byteCount);
bbuffer->length += bitCount;
return true;
}
// Let the bit twiddling begin
nextBitsBytePtr = bits;
tmpBuf = *nextBufBytePtr;
tmpBufLen = bbuffer->length % 8;
tmpBuf >>= 8 - tmpBufLen;
tmpBufMask = (~0u) >> ((sizeof(unsigned) * 8) - tmpBufLen);
// tmpBufMask has the first tmpBufLen bits set to 1.
// E.g. "tmpBufLen == 3" ==> "tmpBufMask == 0b111 (7)"
// or "tmpBufLen == 6" ==> "tmpBufMask = 0b111111 (63)", and so on.
// Beyond this point we will neither access bbuffer->length again, nor
// can this function fail anymore, so we set the final length already.
bbuffer->length += bitCount;
// Process input bits in byte chunks as long as possible
while (bitCount >= 8) {
// Add 8 bits to tmpBuf
tmpBuf = (tmpBuf << 8) | *nextBitsBytePtr;
// tmpBuf now has "8 + tmpBufLen" bits set
// Add the highest 8 bits of tmpBuf to our BitBuffer
*nextBufBytePtr = (uint8_t)(tmpBuf >> tmpBufLen);
// Cut off the highest 8 bits of tmpBuf
tmpBuf &= tmpBufMask;
// tmpBuf now has tmpBufLen bits set again
// Skip to next input/output byte
bitCount -= 8;
nextBufBytePtr++;
nextBitsBytePtr++;
}
// Test if we still have bits left. That will be the case
// if the input bit count was no integral multiple of 8.
if (bitCount != 0) {
// Add bitCount bits to tmpBuf
tmpBuf = (tmpBuf << bitCount) | (*nextBitsBytePtr >> (8 - bitCount));
tmpBufLen += bitCount;
}
// tmpBufLen is never 0 here, it must have a value in the range [1, 14].
// We add zero bits to it so that tmpBuf has 16 bits set.
tmpBuf <<= (16 - tmpBufLen);
// Now we only need to add one or two more bytes from tmpBuf to our
// BitBuffer, depending on its length prior to adding the zero bits.
*nextBufBytePtr = (uint8_t)(tmpBuf >> 8);
if (tmpBufLen > 8) {
*(++nextBufBytePtr) = (uint8_t)(tmpBuf & 0xFF);
}
return true;
}
int main ()
{
bool res;
uint8_t testData[4];
struct BitBuffer * buf;
buf = newBitBuffer(1024); // Can hold up to 1024 bits
assert(buf);
// Let's add some test data.
// Add 1 bit "1" => Buffer "1"
testData[0] = 0xFF;
res = addBitsToBuffer(buf, testData, 1);
assert(res);
// Add 6 bits "0101 01" => Buffer "1010 101"
testData[0] = 0x54;
res = addBitsToBuffer(buf, testData, 6);
assert(res);
// Add 4 Bits "1100" => Buffer "1010 1011 100"
testData[0] = 0xC0;
res = addBitsToBuffer(buf, testData, 4);
assert(res);
// Add 16 Bits "0111 1010 0011 0110"
// ==> Buffer "1010 1011 1000 1111 0100 0110 110
testData[0] = 0x7A;
testData[1] = 0x36;
res = addBitsToBuffer(buf, testData, 16);
assert(res);
// Add 5 Bits "0001 1"
// ==> Buffer "1010 1011 1000 1111 0100 0110 1100 0011"
testData[0] = 0x18;
res = addBitsToBuffer(buf, testData, 5);
assert(res);
// Buffer should now have exactly a length of 32 bits
assert(buf->length == 32);
// And it should have the value 0xAB8F46C3
testData[0] = 0xAB;
testData[1] = 0x8F;
testData[2] = 0x46;
testData[3] = 0xC3;
assert(memcmp(buf->buffer, testData, 4) == 0);
free(buf);
return 0;
}
The code is not optimized for maximum performance, yet I guess it should have a decent performance nonetheless. Any additional performance tweaks would have increased the code size noticeably and I wanted to keep the code rather simple. Some people may argue that using >> 3
instead of / 8
and & 0x7
instead of % 8
will lead to better performance, yet if you use a decent C compiler, that's exactly what the compiler will internally do anyway if you enable optimizations and thus I preferred to keep the code more readable instead.
Additional Note
When you pass pointers to multi-byte data types, watch the byte order! E.g. the following code
uint16_t x16 = ...;
addBitsToBuffer(buf, &x16, ...);
uint32_t x32 = ...;
addBitsToBuffer(buf, &x32, ...);
works fine on a big endian machine (PPC CPU), yet it may not give the expected results on a little endian machine (e.g. x86 CPU). On a little endian machine you would have to swap the byte order first. You can use htons
and htonl
for this purpose:
uint16_t x16 = ...;
uint16_t x16be = htons(x16);
addBitsToBuffer(buf, &x16be, ...);
uint32_t x32 = ...;
uint32_t x32be = htonl(x32);
addBitsToBuffer(buf, &x32be, ...);
On a big endian machine, htonX
functions/macros usually do nothing, since the value is already in "network byte order" (big endian), while on a little endian machine they will swap the byte order.
Passing an uint8_t pointer will always work on either machine, it is only a single byte, hence there is no byte order.