I have an image which is read as a uint8 array with the shape (512,512,3)
.
Now I would like to convert this array to a uint8 array of shape (512,512,1)
Here's one based on views
-
# https://stackoverflow.com/a/45313353/ @Divakar
def view1D(a, b): # a, b are arrays
# This function gets 1D view into 2D input arrays
a = np.ascontiguousarray(a)
b = np.ascontiguousarray(b)
void_dt = np.dtype((np.void, a.dtype.itemsize * a.shape[-1]))
return a.view(void_dt).ravel(), b.view(void_dt).ravel()
def img2label(a, maps):
# Get one-dimension reduced view into input image and map arrays.
# We need to reshape image to 2D, then feed it to view1D to get 1D
# outputs and then reshape 1D image to 2D
A,B = view1D(a.reshape(-1,a.shape[-1]),maps)
A = A.reshape(a.shape[:2])
# Trace back positions of A in B using searchsorted. This gives us
# original order, which is the final output.
sidx = B.argsort()
return sidx[np.searchsorted(B,A,sorter=sidx)]
Given that your labels start from 1
, you might want to add 1
to the output.
Sample run -
In [100]: # Mapping array
...: maps = np.array([[0, 0, 0],[0, 0, 255],\
...: [255, 0, 0],[150, 30, 150]],dtype=np.uint8)
...:
...: # Setup random image array
...: idx = np.array([[0,2,1,3],[1,3,2,0]])
...: img = maps[idx]
In [101]: img2label(img, maps) # should retrieve back idx
Out[101]:
array([[0, 2, 1, 3],
[1, 3, 2, 0]])
You could use giant lookup table. Let cls be [[0,0,0], [0,0,255], ...]
of dtype=np.uint8
.
LUT = np.zeros(size=(256,256,256), dtype='u1')
LUT[cls[:,0],cls[:,1],cls[:,2]] = np.arange(cls.shape[1])+1
img_as_cls = LUT[img[...,0],img[...,1], img[...,2]]
This solution is O(1) per pixel. It is also quite cache efficient because a small part of entries in LUT are actually used. It takes circa 10ms to process 1000x1000 image on my machine.
The solution can be slightly improved by converting 3-color channels to 24-bit integers. Here is the code
def scalarize(x):
# compute x[...,2]*65536+x[...,1]*256+x[...,0] in efficient way
y = x[...,2].astype('u4')
y <<= 8
y +=x[...,1]
y <<= 8
y += x[...,0]
return y
LUT = np.zeros(2**24, dtype='u1')
LUT[scalarize(cls)] = 1 + np.arange(cls.shape[0])
simg = scalarize(img)
img_to_cls = LUT[simg]
After optimization it takes about 5ms to process 1000x1000 image.
One way: separately create the boolean arrays with True
values where the input's pixel value matches one of the palette values, and then use arithmetic to combine them. Thus:
palette = [
[0, 0, 0],
[0, 0, 255],
[255, 0, 0],
# etc.
]
def palettized(data, palette):
# Initialize result array
shape = list(data.shape)
shape[-1] = 1
result = np.zeros(shape)
# Loop and add each palette index component.
for value, colour in enumerate(palette, 1):
result += (data == colour).all(axis=2) * value
return result