I have a data frame as follows:
Category Name Value
How would I select say, 5 random names per category? Using sample
returns random ro
If you want the same number of items from each category, this is easy:
df[unlist(tapply(1:nrow(df),df$Category,function(x) sample(x,3))),]
e.g., I generated df
as follows:
df <- data.frame(Category=rep(1:5,each=20),Name=1:100,Value=rnorm(100))
then I get the follow from my code:
> df[unlist(tapply(1:nrow(df),df$Category,function(x) sample(x,3))),]
Category Name Value
5 1 5 0.25151044
20 1 20 1.52486482
18 1 18 0.69313462
30 2 30 0.73444185
27 2 27 0.24000427
39 2 39 -0.10108203
46 3 46 -0.37200574
49 3 49 -1.84920469
43 3 43 0.35976388
68 4 68 0.57879516
76 4 76 -0.11049302
64 4 64 -0.13471303
100 5 100 0.95979408
95 5 95 -0.01928741
99 5 99 0.85725242
If you want different numbers of rows from each category it will be more complicated.
Best guess in absence of test cases:
do.call( rbind, lapply( split(dfrm, df$cat) ,
function(df) df[sample(nrow(df), 5) , ] )
)
Tested with Jonathan's data:
> do.call( rbind, lapply( split(df, df$Category) ,
+ function(df) df[sample(nrow(df), 5) , ] )
+ )
Category Name Value
1.8 1 8 -0.2496109 # useful side-effect of labeling source group
1.15 1 15 -0.4037368
1.17 1 17 -0.4223724
1.12 1 12 -0.9359026
1.18 1 18 0.3741184
2.37 2 37 0.3033610
2.34 2 34 -0.4517738
2.36 2 36 -0.7695923
snipped remainder
In the past, I've used a little wrapper I wrote for some of the functions from the "sampling" package.
Here's the function:
strata.sampling <- function(data, group, size, method = NULL) {
# USE:
# * Specify a data.frame and grouping variable.
# * Decide on your sample size. For a sample proportional to the
# population, enter "size" as a decimal. For an equal number of
# samples from each group, enter "size" as a whole number. For
# a specific number of samples from each group, enter the numbers
# required as a vector.
require(sampling)
if (is.null(method)) method <- "srswor"
if (!method %in% c("srswor", "srswr"))
stop('method must be "srswor" or "srswr"')
temp <- data[order(data[[group]]), ]
ifelse(length(size) > 1,
size <- size,
ifelse(size < 1,
size <- round(table(temp[group]) * size),
size <- rep(size, times=length(table(temp[group])))))
strat = strata(temp, stratanames = names(temp[group]),
size = size, method = method)
getdata(temp, strat)
}
Here's how you can use it:
# Sample data --- Note each category has a different number of observations
df <- data.frame(Category = rep(1:5, times = c(40, 15, 7, 13, 25)),
Name = 1:100, Value = rnorm(100))
# Sample 5 from each "Category" group
strata.sampling(df, "Category", 5)
# Sample 2 from the first category, 3 from the next, and so on
strata.sampling(df, "Category", c(2, 3, 4, 5, 2))
# Sample 15% from each group
strata.sampling(df, "Category", .15)
There is also an enhanced function I wrote here. That function gracefully handles cases where a group might have fewer observations than the specified number of samples, and also lets you stratify by multiple variables. See the docs for several examples.