Pandas Dataframe - find the row with minimum value based on two columns but greater than 0

后端 未结 3 1713
南方客
南方客 2021-01-22 16:31

I have a dataframe with 3 columns: x, y, time. There are a few thousand rows.

What I want to do is retrieve the row with the minimum time but I would like that the minim

相关标签:
3条回答
  • 2021-01-22 16:41

    You can filter out 0 values by query and get index of minimal value by idxmin, last select by loc:

    s = df.loc[df.query('time != 0')['time'].idxmin()]
    print (s)
    x       240.0
    y        19.0
    time      9.7
    Name: 3, dtype: float64
    
    df = df.loc[[df.query('time != 0')['time'].idxmin()]]
    print (df)
         x   y  time
    3  240  19   9.7
    
    0 讨论(0)
  • 2021-01-22 16:44

    Try this:

    In [69]: df.loc[df.time>0, 'time'].idxmin()
    Out[69]: 3
    

    or

    In [72]: df.loc[[df.loc[df.time>0, 'time'].idxmin()]]
    Out[72]:
         x   y  time
    3  240  19   9.7
    
    0 讨论(0)
  • 2021-01-22 16:58

    You don't need groupby at all. Here's an option with mask/where + loc + idxmin;

    df.loc[[df.time.mask(df.time.eq(0)).idxmin()]]
    

    Or,

    df.loc[[df.time.where(df.time.ne(0)).idxmin()]]
    

         x   y  time
    3  240  19   9.7
    
    0 讨论(0)
提交回复
热议问题