I\'m having a difficulty with applying agg
to a groupby
pandas dataframe.
I have a dataframe df
like this:
order_i
Using groupby
with first
:
s = df.groupby('order_id').transform('first')
df.assign(crow=s.distance_theo.div(s.bird_distance))
order_id distance_theo bird_distance crow
0 10 100 80 1.250000
1 10 80 80 1.250000
2 10 70 80 1.250000
3 11 90 70 1.285714
4 11 70 70 1.285714
5 11 60 70 1.285714
6 12 200 180 1.111111
7 12 150 180 1.111111
8 12 100 180 1.111111
9 12 60 180 1.111111
You could do it without groupby and use drop_duplicate
and join
:
df.join(df.drop_duplicates('order_id')\
.eval('crow = distance_theo / bird_distance')[['crow']]).ffill()
or use assign
instead of eval
per @jezraela comments below:
df1.join(df1.drop_duplicates('order_id')\
.assign(crow=df1.distance_theo / df1.bird_distance)[['crow']]).ffill()
Output:
order_id distance_theo bird_distance crow
0 10 100 80 1.250000
1 10 80 80 1.250000
2 10 70 80 1.250000
3 11 90 70 1.285714
4 11 70 70 1.285714
5 11 60 70 1.285714
6 12 200 180 1.111111
7 12 150 180 1.111111
8 12 100 180 1.111111
9 12 60 180 1.111111