Python - find occurrences of list of strings within string

前端 未结 4 1538
不思量自难忘°
不思量自难忘° 2021-01-22 13:29

I have a large string and a list of search strings and want to build a boolean list indicating whether or not each of the search strings exists in the large string. What is the

相关标签:
4条回答
  • 2021-01-22 13:40

    I can't say if this is the fastest, (this is still O(n*m)), but this is the way I would do it:

    def check_strings(search_list, input_string):
        return [s in input_string for s in search_list]
    

    The following program might be faster, or not. It uses a regular expression to make one pass through the input string. Note that you may you may want to use re.escape(i) in the re.findall() expression, or not, depending upon your needs.

    def check_strings_re(search_string, input_string):
        import re
        return [any(l)
                for l in
                zip(*re.findall('|'.join('('+i+')' for i in search_string),
                                input_string))]
    

    Here is a complete test program:

    def check_strings(search_list, input_string):
        return [s in input_string for s in search_list]
    
    
    def check_strings_re(search_string, input_string):
        import re
        return [any(l)
                for l in
                zip(*re.findall('|'.join('('+i+')' for i in search_string),
                                input_string))]
    
    
    search_strings = ["hello", "world", "goodbye"]
    test_string = "hello world"
    assert check_strings(search_strings, test_string) == [True, True, False]
    assert check_strings_re(search_strings, test_string) == [True, True, False]
    
    0 讨论(0)
  • 2021-01-22 13:44

    An implementation using the Aho Corasick algorithm (https://pypi.python.org/pypi/pyahocorasick/), which uses a single pass through the string:

    import ahocorasick
    import numpy as np
    
    def check_strings(search_list, input):
        A = ahocorasick.Automaton()
        for idx, s in enumerate(search_list):
            A.add_word(s, (idx, s))
        A.make_automaton()
    
        index_list = []
        for item in A.iter(input):
            index_list.append(item[1][0])
    
        output_list = np.array([0] * len(search_list))
        output_list[index_list] = 1
        return output_list.tolist()
    
    search_strings = ["hello", "world", "goodbye"]
    test_string = "hello world"
    print(check_strings(search_strings, test_string))
    
    0 讨论(0)
  • 2021-01-22 14:00

    My version using regular expressions:

    def check_strings(search_strings, input_string):
        regexp = re.compile('|'.join([re.escape(x) for x in search_strings]))
        found = set(regexp.findall(input_string))
        return [x in found for x in search_strings]
    

    On the test data provided by original poster it is by an order of magnitude slower than Rob's pretty solution, but I'm going to do some benchmarking on a bigger sample.

    0 讨论(0)
  • 2021-01-22 14:01

    I post it just for comparison. My comparing code:

    #!/usr/bin/env python3
    def gettext():
        from os import scandir
        l = []
        for file in scandir('.'):
            if file.name.endswith('.txt'):
                l.append(open(file.name).read())
        return ' '.join(l)
    
    def getsearchterms():
        return list(set(open('searchterms').read().split(';')))
    
    def rob(search_string, input_string):
        import re
        return [any(l)
                for l in
                zip(*re.findall('|'.join('('+i+')' for i in search_string),
                                input_string))]
    
    def blotosmetek(search_strings, input_string):
        import re
        regexp = re.compile('|'.join([re.escape(x) for x in search_strings]))
        found = set(regexp.findall(input_string))
        return [x in found for x in search_strings]
    
    def ahocorasick(search_list, input):
        import ahocorasick
        import numpy as np
        A = ahocorasick.Automaton()
        for idx, s in enumerate(search_list):
            A.add_word(s, (idx, s))
        A.make_automaton()
    
        index_list = []
        for item in A.iter(input):
            index_list.append(item[1][0])
    
        output_list = np.array([0] * len(search_list))
        output_list[index_list] = 1
        return output_list.tolist()
    
    def naive(search_list, text):
        return [s in text for s in search_list]
    
    def test(fn, args):
        start = datetime.now()
        ret = fn(*args)
        end = datetime.now()
        return (end-start).total_seconds()
    
    if __name__ == '__main__':
        from datetime import datetime
        text = gettext()
        print("Got text, total of", len(text), "characters")
        search_strings = getsearchterms()
        print("Got search terms, total of", len(search_strings), "words")
    
        fns = [ahocorasick, blotosmetek, naive, rob]
        for fn in fns:
            r = test(fn, [search_strings, text])
            print(fn.__name__, r*1000, "ms")
    

    I used different words that appear in Leviathan as search terms and concatenated 25 most downloaded books from Project Gutenberg as search string. Results are as follows:

    Got text, total of 18252025 characters
    Got search terms, total of 12824 words
    ahocorasick 3824.111 milliseconds
    Błotosmętek 360565.542 milliseconds
    naive 73765.67 ms
    

    Robs version runs already for about an hour and still doesn't finish. Maybe it's broken, maybe it's simply painfully slow.

    0 讨论(0)
提交回复
热议问题