How to compute basis of nullspace with Eigen library?

后端 未结 3 1113
孤街浪徒
孤街浪徒 2021-01-22 10:10

How to compute basis of nullspace of a matrix with Eigen library?

I tried to find explicit function name to compute null basis and also

相关标签:
3条回答
  • 2021-01-22 10:25

    Alternative: Use OpenCV to calculate null space:

    `
    cv::Mat EpipolarConstraint::getNullSpace(cv::Mat p)
    {
        cv::SVD svd = cv::SVD(p, cv::SVD::FULL_UV);
        cv::Mat vt_ = svd.vt;
        int i;
        for (i = 1; i <= 3; i++)
        {
            if (p.at<double>(i - 1, i - 1) == 0)
            {
                break;
            }
        }
        cv::Mat result = vt_(cv::Rect(0, i-1, p.cols, vt_.rows-i+1));
        cv::Mat result_t;
        cv::transpose(result, result_t);
        return result_t;
    }`
    
    0 讨论(0)
  • 2021-01-22 10:30

    You can get a basis of the null space using Eigen::FullPivLU::kernel() method:

    FullPivLU<MatrixXd> lu(A);
    MatrixXd A_null_space = lu.kernel();
    
    0 讨论(0)
  • 2021-01-22 10:39

    FullPivLU is most expensive computationally in Eigen, http://eigen.tuxfamily.org/dox/group__DenseDecompositionBenchmark.html.

    A quicker alternative is to use CompleteOrthogonalDecomposition. This code uses four fundamental subspaces of a matrix (google four fundamental subspaces and URV decomposition):

    Matrix<double, Dynamic, Dynamic> mat37(3,7);
    mat37 = MatrixXd::Random(3, 7);
    
    CompleteOrthogonalDecomposition<Matrix<double, Dynamic, Dynamic> > cod;
    cod.compute(mat37);
    cout << "rank : " << cod.rank() << "\n";
    // Find URV^T
    MatrixXd V = cod.matrixZ().transpose();
    MatrixXd Null_space = V.block(0, cod.rank(),V.rows(), V.cols() - cod.rank());
    MatrixXd P = cod.colsPermutation();
    Null_space = P * Null_space; // Unpermute the columns
    // The Null space:
    std::cout << "The null space: \n" << Null_space << "\n" ;
    // Check that it is the null-space:
    std::cout << "mat37 * Null_space = \n" << mat37 * Null_space  << '\n';
    
    0 讨论(0)
提交回复
热议问题