Numpy Matrix Multiplication U*B*U.T Results in Non-symmetric Matrix

后端 未结 1 1041
夕颜
夕颜 2021-01-22 06:23

In my program, I need the following matrix multiplication:

A = U * B * U^T

where B is an M * M symmetric matrix, and

相关标签:
1条回答
  • 2021-01-22 06:45

    You observed that So U, a 10*5 matrix, is indeed orthonormal except numerical rounding causes not exactly identity.

    The same reasoning applies to A - it is symmetric except for numerical rounding:

    In [176]: A=np.dot(U,np.dot(B,U.T)) 
    
    In [177]: np.allclose(A,A.T)
    Out[177]: True
    
    In [178]: A-A.T
    Out[178]: 
    array([[  0.00000000e+00,  -2.22044605e-16,   1.38777878e-16,
              5.55111512e-17,  -2.49800181e-16,   0.00000000e+00,
              0.00000000e+00,  -1.11022302e-16,  -1.11022302e-16,
              0.00000000e+00],
           ...
           [  0.00000000e+00,   0.00000000e+00,   1.11022302e-16,
              2.77555756e-17,  -1.11022302e-16,   4.44089210e-16,
             -2.22044605e-16,  -2.22044605e-16,   0.00000000e+00,
              0.00000000e+00]])
    

    I use np.allclose when comparing float arrays.

    I also prefer ndarray and np.dot over np.matrix because element by element multiplication is just as common as matrix multiplication.

    If the rest of the code depends on A being symmtric, then your trick may be a good choice. It's not computationally expensive.

    For some reason einsum avoids the numerical issues:

    In [189]: A1=np.einsum('ij,jk,lk',U,B,U)
    
    In [190]: A1-A1.T
    Out[190]: 
    array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.]])
    
    In [193]: np.allclose(A,A1)
    Out[193]: True
    
    0 讨论(0)
提交回复
热议问题