How can I delete certain rows according to two columns which have symmetricl values in data.table in R?

后端 未结 4 1481
粉色の甜心
粉色の甜心 2021-01-22 04:45

For example, I have a table as follows:

DT <- data.table(
  A = c(1,1,1,2,2,2,3,3,3), 
  B = c(1,2,3,1,2,3,1,2,3),
  key = \"A\"
)

I wand to

相关标签:
4条回答
  • 2021-01-22 05:19

    Another method for the case where there are only 2 columns, using anti-join.

    dupes <- unique(DT[B > A])[unique(DT[A < B]), on=c("A"="B", "B"="A")]
    ans <- unique(DT)[!dupes, on=.(A, B)]
    

    timing code:

    library(data.table)
    set.seed(0L)
    
    nr <- 1e5
    nElem <- 1e3
    mat <- matrix(sample(nElem, nr*2, replace=TRUE), ncol=2)
    DT <- as.data.table(mat)
    setnames(DT, c("A", "B"))
    DT2 <- copy(DT)
    
    library(microbenchmark)
    mtd1 <- function() unique(data.frame(A=pmin(mat[, 1], mat[, 2]), B=pmax(mat[, 1], mat[, 2])))
    mtd2 <- function() DT[!duplicated(apply(cbind(A, B), 1L, sort), MARGIN = 2L)]
    mtd3 <- function() DT2[, g := paste(B, A, sep="_")][A < B, g := paste(A, B, sep="_")][!duplicated(g), !"g"]
    mtd4 <- function() {
        dupes <- unique(DT[B > A])[unique(DT[A < B]), on=c("A"="B", "B"="A")]
        ans <- unique(DT)[!dupes, on=.(A, B)]
    }
    microbenchmark(mtd1(),mtd2(),mtd3(),mtd4(),times=3L)
    

    some timings:

    Unit: milliseconds
       expr        min         lq       mean     median         uq        max neval
     mtd1()  118.62051  129.50581  153.77216  140.39111  171.34799  202.30487     3
     mtd2() 3500.47877 3552.80879 3732.67006 3605.13882 3848.76571 4092.39260     3
     mtd3()   89.22901   92.94830   97.22658   96.66759  101.22536  105.78313     3
     mtd4()   28.61628   32.37641   50.90126   36.13654   62.04375   87.95096     3
    

    But the fastest is eddi's method: data.table with two string columns of set elements, extract unique rows with each row unsorted

    mtd5 <- function() DT[DT[, .I[1L], by=.(pmin(A, B), pmax(A, B))]$V1]
    microbenchmark(mtd1(),mtd2(),mtd3(),mtd4(),mtd5(),times=3L)
    

    timings:

    Unit: milliseconds
       expr        min         lq       mean     median         uq        max neval
     mtd1()  149.62224  150.70685  175.66394  151.79146  188.68479  225.57813     3
     mtd2() 4126.51014 4140.72876 4277.37907 4154.94738 4352.81353 4550.67968     3
     mtd3()  126.01679  131.26463  134.63642  136.51247  138.94624  141.38000     3
     mtd4()   39.24141   42.42815   45.65804   45.61489   48.86635   52.11781     3
     mtd5()   12.58396   16.68156   18.21613   20.77915   21.03221   21.28527     3
    
    0 讨论(0)
  • 2021-01-22 05:20

    Maybe not the most efficient, but leverage the duplicated.matrix method:

    DT[!duplicated(apply(cbind(A, B), 1L, sort), MARGIN = 2L)]
    #    A B
    # 1: 1 1
    # 2: 1 2
    # 3: 1 3
    # 4: 2 2
    # 5: 2 3
    # 6: 3 3
    
    0 讨论(0)
  • 2021-01-22 05:26

    if you only have two columns, then you could do:

     unique(do.call(function(A,B)data.table(A=pmin(A,B),B=pmax(A,B)),DT))
       A B
    1: 1 1
    2: 1 2
    3: 1 3
    4: 2 2
    5: 2 3
    6: 3 3
    
    0 讨论(0)
  • 2021-01-22 05:33

    Another option:

    DT[, g := paste(B, A, sep="_")][A < B, g := paste(A, B, sep="_")][!duplicated(g), !"g"]
    
       A B
    1: 1 1
    2: 1 2
    3: 1 3
    4: 2 2
    5: 2 3
    6: 3 3
    

    So ...

    1. make a grouping variable as A + B,
    2. flip the order to B + A on subset A < B or A > B
    3. dedupe on the grouping variable

    The last step could alternately be unique(DT, by="g").

    0 讨论(0)
提交回复
热议问题