I would like to tabulate by row within a data frame. I can obtain adequate results using table
within apply
in the following example:
Here's a table
solution:
table(
rep(rownames(df.1),5),
unlist(df.1[,4:8]),
useNA="ifany")
This gives
0 1 2 10 20 200 <NA>
1 3 1 1 0 0 0 0
2 0 0 0 3 1 0 1
3 0 0 0 0 0 3 2
4 0 0 0 0 0 0 5
...and for your df.2
:
0 1 2 <NA>
1 5 0 0 0
2 0 5 0 0
3 0 0 5 0
4 0 0 0 5
Well, this is a solution unless you really like having a list of tables for some reason.
I think the problem is stated in apply
s help:
... If n equals 1, apply returns a vector if MARGIN has length 1 and an array of dimension dim(X)[MARGIN] otherwise ...
The inconsistencies of the return values of base R's apply family is the reason why I shifted completely to plyr
s **ply functions. So this works as desired:
library(plyr)
alply( df.2[ 4:8 ], 1, function(x) table( unlist(x), useNA = "ifany" ) )
You can use lapply
to systematically output a list. You would have to loop over the row indices:
sub.df <- as.matrix(df.2[grepl("year", names(df.2))])
lapply(seq_len(nrow(sub.df)),
function(i)table(sub.df[i, ], useNA = "ifany"))
Protect the result by wrapping with list
:
apply(tdf.2[4:nrow(tdf.2),1:nrow(df.2)], 2,
function(x) {list(table(x, useNA = "ifany")) })