I am using BehaviorSpace to run the model hundreds of times with different parameters. But I need to know the locations of all turtles as a result instead of only the number of
Seth's suggestion of incorporating behaviorspace-run-number in the filename of your csv
output is one alternative. It would allow you to associate that file with the summary data in your main BehaviorSpace output file.
Another option is to include list reporters as "measures" in your behavior space experiment definition. For example, in your case:
map [ t -> [ xcor ] of t ] sort turtles
map [ t -> [ ycor ] of t ] sort turtles
You can then parse the resulting list "manually" in your favourite data analysis language. I've used the following function for this before, in Julia:
parselist(strlist, T = Float64) = parse.(T, split(strlist[2:end-1]))
I'm sure you can easily write some equivalent code in Python or R or whatever language you're using.
In the example above, I've outputted separate lists for the xcor
and the ycor
of turtles. You could also output a single "list of lists", but the parsing would be trickier.
csv
extension and RCoincidentally, I had to do something similar today for a different project, and I realized that a combination of the csv extension and R can make this very easy.
The general idea is the following:
In NetLogo, use csv:to-string to encode list data into a string and then write that string directly in the BehaviorSpace output.
In R, use purrr::map and readr::read_csv, followed by tidyr::unnest, to unpack everything in a neat "one observation per row" dataframe.
In other words: we like CSV, so we put CSV in our CSV so we can parse while we parse.
Here is a full-fledged example. Let's say we have the following NetLogo model:
extensions [ csv ]
to setup
clear-all
create-turtles 2 [ move-to one-of patches ]
reset-ticks
end
to go
ask turtles [ forward 1 ]
tick
end
to-report positions
let coords [ (list who xcor ycor) ] of turtles
report csv:to-string fput ["who" "x" "y"] coords
end
We then define the following tiny BehaviorSpace experiment, with only two repetitions and a time limit of two, using our positions
reporter as an output:
The R code to process this is pleasantly straightforward:
library(tidyverse)
df <- read_csv("experiment-table.csv", skip = 6) %>%
mutate(positions = map(positions, read_csv)) %>%
unnest()
Which results in the following dataframe, all neat and tidy:
> df
# A tibble: 12 x 5
`[run number]` `[step]` who x y
<int> <int> <int> <dbl> <dbl>
1 1 0 0 16 10
2 1 0 1 10 -2
3 1 1 1 9.03 -2.24
4 1 1 0 -16.0 10.1
5 1 2 1 8.06 -2.48
6 1 2 0 -15.0 10.3
7 2 0 1 -14 1
8 2 0 0 13 15
9 2 1 0 14.0 15.1
10 2 1 1 -13.7 0.0489
11 2 2 0 15.0 15.1
12 2 2 1 -13.4 -0.902
using CSV, DataFrames
df = CSV.read("experiment-table.csv", header = 7)
cols = filter(col -> col != :positions, names(df))
df = by(df -> CSV.read(IOBuffer(df[:positions][1])), df, cols)