I\'ve got a dataframe with a text column name
and factor city
. It is ordered alphabetically firstly by city
and then name
. No
A data.table
solution
library(data.table)
DT <- data.table(test)
# return all columns from the subset data.table
n <- 4
DT[,.SD[n,] ,by = city]
## city name
## 1: Atlanta NA
## 2: Boston Matt
## 3: Seattle NA
# if you just want the nth element of `name`
# (excluding other columns that might be there)
# any of the following would work
DT[,.SD[n,] ,by = city, .SDcols = 'name']
DT[, .SD[n, list(name)], by = city]
DT[, list(name = name[n]), by = city]
In base R using by
:
Set up some test data, including an additional out of range value:
test <- read.table(text="name city
John Atlanta
Josh Atlanta
Matt Atlanta
Bob Boston
Kate Boston
Lily Boston
Matt Boston
Bob Seattle
Kate Seattle",header=TRUE)
Get the 3rd item in each city:
do.call(rbind,by(test,test$city,function(x) x[3,]))
Result:
name city
Atlanta Matt Atlanta
Boston Lily Boston
Seattle <NA> <NA>
To get exactly what you want, here is a little function:
nthrow <- function(dset,splitvar,n) {
result <- do.call(rbind,by(dset,dset[splitvar],function(x) x[n,]))
result[,splitvar][is.na(result[,splitvar])] <- row.names(result)[is.na(result[,splitvar])]
row.names(result) <- NULL
return(result)
}
Call it like:
nthrow(test,"city",3)
Result:
name city
1 Matt Atlanta
2 Lily Boston
3 <NA> Seattle
You can use plyr
for this:
dat <- structure(list(name = c("John", "Josh", "Matt", "Bob", "Kate",
"Lily", "Matt"), city = c("Atlanta", "Atlanta", "Atlanta", "Boston", "Boston", "Boston", "Boston")), .Names = c("name", "city"), class = "data.frame", row.names = c(NA, -7L))
library(plyr)
ddply(dat, .(city), function(x, n) x[n,], n=3)
> ddply(dat, .(city), function(x, n) x[n,], n=3)
name city
1 Matt Atlanta
2 Lily Boston
> ddply(dat, .(city), function(x, n) x[n,], n=4)
name city
1 <NA> <NA>
2 Matt Boston
>
There are plenty of other options too using base R or data.table
or sqldf
...