Best way to mimic PyTorch sliced assignment with Keras/Tensorflow

前端 未结 2 656
南旧
南旧 2021-01-21 22:00

I am trying to mimic the operation done in PyTorch below:

vol = Variable(torch.FloatTensor(A, B*2, C, D, E).zero_()).cuda()
for i in range(C):
  if i > 0 :
           


        
相关标签:
2条回答
  • 2021-01-21 22:51

    You need to construct the tensor "by hand". Assuming both input0 and input1 have shape (A, D, E, B), you can do something like this:

    # Make the indexing mask with TensorFlow
    in_shape = tf.shape(input0)
    in_dims = 4
    idx = tf.meshgrid(*[tf.range(in_shape[i]) for i in range(in_dims)], indexing='ij')[2]
    idx = tf.expand_dims(idx, axis=3)
    r = tf.range(C)[tf.newaxis, tf.newaxis, tf.newaxis, :, tf.newaxis]
    mask = idx >= r
    
    # If all dimensions are known at graph construction time, you can instead
    # make the mask with NumPy like this to save graph computation time
    idx = np.meshgrid(*[np.arange(d) for d in (A, D, E, B)], indexing='ij')[2]
    idx = np.expand_dims(idx, 3)
    r = np.arange(C)[np.newaxis, np.newaxis, np.newaxis, :, np.newaxis]
    mask = idx >= r
    
    # Make the tensor
    input0_tile = tf.tile(tf.expand_dims(input0, 3), (1, 1, 1, C, 1))
    input1_tile = tf.tile(tf.expand_dims(input1, 3), (1, 1, 1, C, 1))
    zero_tile = tf.zeros_like(input0_tile)
    vol0 = np.where(mask, input0_tile, zero_tile)
    vol1 = np.where(mask, input1_tile, zero_tile)
    vol = tf.concat([vol0, vol1], axis=-1)
    

    Note that you need either the first or the second block followed by the third block, not the three blocks (see comments). The code builds a binary mask using a tf.meshgrid and a tf.range of indices, then uses tf.where to select values from the inputs or zeros.

    0 讨论(0)
  • 2021-01-21 23:04

    A tf.Variable is sort of a primitive/basic type. You shouldn't want to gradients to propagate out of them.

    What you want is to construct a node that outputs the 5 dimensional tensor like you want.

    I would run a concatenate operation on the 4th dimension to build the tensor and use the result in place of the vol.

    If you don't care about the gradients propagating to input0 and input1, then I would just build the tensor outside of tensorflow and use it as an initializer.

    0 讨论(0)
提交回复
热议问题