Given this:
fn main() {
let variable = [0; 15];
}
The Rust compiler produces this warning:
The key difference between _variable
and variable
is that first one tells compiler not to give any warnings if we do not use it in our code. Example:
// src/main.rs
fn main() {
let _x = 1;
let y = 2;
}
Compiling main.rs
gives:
warning: unused variable: `y`
--> src/main.rs:3:9
|
3 | let y = 2;
| ^ help: if this is intentional, prefix it with an underscore: `_y`
|
= note: `#[warn(unused_variables)]` on by default
The more interesting case is when we are comparing _
with _variable
.
Ignoring an Unused Variable by Starting Its Name with _:
The syntax _x still binds the value to the variable, whereas _ doesn’t bind at all.
Consider example:
// src/main.rs
fn main() {
let s = Some(String::from("Hello!"));
if let Some(_s) = s {
println!("found a string");
}
println!("{:?}", s);
}
When we try to compile main.rs
we get error:
error[E0382]: borrow of moved value: `s`
--> src/main.rs:8:22
|
4 | if let Some(_s) = s {
| -- value moved here
...
8 | println!("{:?}", s);
| ^ value borrowed here after partial move
|
= note: move occurs because value has type `std::string::String`, which does not implement the `Copy` trait
help: borrow this field in the pattern to avoid moving `s.0`
|
4 | if let Some(ref _s) = s {
| ^^^
Aha! The syntax _x still binds the value to the variable, which means that we are moving the ownership of s
to _s
, thus, we can no longer access variable s
anymore; which happens when we try to print value of s
.
The correct way of doing the above is:
// src/main.rs
fn main() {
let s = Some(String::from("Hello!"));
if let Some(_) = s {
println!("found a string");
}
println!("{:?}", s);
}
Above code works just fine. s
does not get moved into _
, so we can still access it later.
Sometimes I use _
with iterators:
fn main() {
let v = vec![1, 2, 3];
let _ = v
.iter()
.map(|x| {
println!("{}", x);
})
.collect::<Vec<_>>();
}
Compiling gives result:
1
2
3
When doing more complex operations on iterable types above example acts as utility for me.
The difference is an underscore at the front, which causes the Rust compiler to allow it to be unused. It is kind of a named version of the bare underscore _
which can be used to ignore a value.
However, _name
acts differently than _
. The plain underscore drops the value immediately while _name
acts like any other variable and drops the value at the end of the scope.
An example of how it does not act exactly the same as a plain underscore:
struct Count(i32);
impl Drop for Count {
fn drop(&mut self) {
println!("dropping count {}", self.0);
}
}
fn main() {
{
let _a = Count(3);
let _ = Count(2);
let _c = Count(1);
}
{
let _a = Count(3);
let _b = Count(2);
let _c = Count(1);
}
}
prints the following (playground):
dropping count 2
dropping count 1
dropping count 3
dropping count 1
dropping count 2
dropping count 3