Say we have
a = np.ones((3,3,3))
and
slices = [(0, 1, slice(None)), (0, slice(None), 0), (slice(None), 1, 0)]
Do you know what r_
does? It converts the slices into ranges, and then concatenates the whole mess together.
I don't know if you can use r_
or something similar to construct the required indices. But:
In [168]: idx = np.where(a==0)
In [169]: idx
Out[169]:
(array([0, 0, 0, 0, 0, 1, 2]),
array([0, 1, 1, 1, 2, 1, 1]),
array([0, 0, 1, 2, 0, 0, 0]))
this is gives us an idea of the required indexing arrays (minus some likely duplicates).
It might be possible to concatenate these 3 ogrid
lists into a composite:
In [181]: np.ogrid[0:1,1:2,:3]
Out[181]: [array([[[0]]]), array([[[1]]]), array([[[0, 1, 2]]])]
In [182]: np.ogrid[0:1,:3,0:1]
Out[182]:
[array([[[0]]]), array([[[0],
[1],
[2]]]), array([[[0]]])]
In [183]: np.ogrid[:3,1:2,0:1]
Out[183]:
[array([[[0]],
[[1]],
[[2]]]), array([[[1]]]), array([[[0]]])]
Individually they select the 0s in a
.
It may be easiest to convert them into their raveled equivalents, and join the resulting 1d arrays.
In [188]: np.ravel_multi_index(Out[181],(3,3,3))
Out[188]: array([[[3, 4, 5]]])
etc
In [195]: np.hstack([Out[188].ravel(), Out[189].ravel(), Out[190].ravel()])
Out[195]: array([ 3, 4, 5, 0, 3, 6, 3, 12, 21])
In [197]: a.flat[_]
Out[197]: array([0., 0., 0., 0., 0., 0., 0., 0., 0.])
In [199]: np.unravel_index(Out[195],(3,3,3))
Out[199]:
(array([0, 0, 0, 0, 0, 0, 0, 1, 2]),
array([1, 1, 1, 0, 1, 2, 1, 1, 1]),
array([0, 1, 2, 0, 0, 0, 0, 0, 0]))
Out[169]
and Out[199]
have the same values, except for duplicates.
This is a generalization of the problem of joining several 1d slices. Indexing and then concatenating takes about as much time as concatenating the indices first.