I have an n-by-m matrix that I want to convert to a mn-by-m matrix, with each m-by-m block of the result containing the diagonal of each row.
For example, if the input i
For a vectorized way to do this, create the linear indices of the diagonal elements into the resulting matrix, and assign directly.
%# create some input data
inArray = [10 11;12 13;14 15];
%# make the index array
[nr,nc]=size(inArray);
idxArray = reshape(1:nr*nc,nc,nr)';
idxArray = bsxfun(@plus,idxArray,0:nr*nc:nr*nc^2-1);
%# create output
out = zeros(nr*nc,nc);
out(idxArray) = inArray(:);
out =
10 0
0 11
12 0
0 13
14 0
0 15
Here's a simple vectorized solution, assuming X
is the input matrix:
Y = repmat(eye(size(X, 2)), size(X, 1), 1);
Y(find(Y)) = X;
Another alternative is to use sparse, and this can be written as a neat one-liner:
Y = full(sparse(1:numel(X), repmat(1:size(X, 2), 1, size(X, 1)), X'));
The easiest way I see to do this is actually quite simple, using simple index referencing and the reshape function:
I = [1 2; 3 4; 5 6];
J(:,[1,4]) = I;
K = reshape(J',2,6)';
If you examine J
, it looks like this:
J =
1 0 0 2
3 0 0 4
5 0 0 6
Matrix K
is just what wanted:
K =
1 0
0 2
3 0
0 4
5 0
0 6
As Eitan T has noted in the comments, the above is specific to the example, and doesn't cover the general solution. So below is the general solution, with m and n as described in the question.
J(:,1:(m+1):m^2) = I;
K=reshape(J',m,m*n)';
If you want to test it to see it working, just use
I=reshape(1:(m*n),m,n)';
Note: if J already exists, this can cause problems. In this case, you need to also use
J=zeros(n,m^2);
It may not be the most computationally efficient solution, but here's a 1-liner using kron
:
A = [1 2; 3 4; 5 6];
B = diag(reshape(A', 6, 1) * kron(ones(3, 1), eye(2))
% B =
% 1 0
% 0 2
% 3 0
% 0 4
% 5 0
% 0 6
This can be generalized if A is n x m:
diag(reshape(A.', n*m, 1)) * kron(ones(n,1), eye(m))