I have this dataframe where gender is expected to be male or female.
from io import StringIO
import pandas as pd
audit_trail = StringIO(\'\'\'
course_id Academi
You can use:
corrections={'mail':'male', 'maela':'male', 'maae':'male', 'male':'male', 'female':'female'}
df11[['Gender']] = df11[['Gender']].applymap(corrections.get).fillna('other')
print (df11)
course_id AcademicYear_to months TotalFee Gender
0 260 2017 24 100 male
1 260 2018 12 140 male
2 274 2016 36 300 male
3 274 2017 24 340 female
4 274 2018 12 200 other
5 285 2017 24 300 other
6 285 2018 12 200 male
EDIT:
For replace only one column is better cᴏʟᴅsᴘᴇᴇᴅ's answer. If want replace multiple columns, better is applymap
.
Add another two dummy entries to your corrections
dict:
corrections = {'male' : 'male', # dummy entry for male
'female' : 'female', # dummy entry for female
'mail' : 'male',
'maela' : 'male',
'maae' : 'male'}
Now, use map
and fillna
:
df11.Gender = df11.Gender.map(corrections).fillna('other')
df11
course_id AcademicYear_to months TotalFee Gender
0 260 2017 24 100 male
1 260 2018 12 140 male
2 274 2016 36 300 male
3 274 2017 24 340 female
4 274 2018 12 200 other
5 285 2017 24 300 other
6 285 2018 12 200 male