I\'d like to return the rows which qualify to a certain condition. I can do this for a single row, but I need this for multiple rows combined. For example \'light green\' qualif
I am not too sure if I understood your question correctly, but if you are looking to put multiple conditions within a dataframe, you can consider this approach:
new_df = df[(df["X"] > 0) & (df["Y"] < 0)]
The &
condition is for AND, while replacing that with |
is for OR condition. Do remember to put the different conditions in ()
.
Lastly, if you want to remove duplicates, you can use this
new_df.drop_duplicates()
You can find more information about this function at here: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.drop_duplicates.html
Hope my answer is useful to you.
Here's a try. You would maybe want to use rolling
or expanding
(for speed and elegance) instead of explicitly looping with range
, but I did it that way so as to be able to print out the rows being used to calculate each boolean.
df = df[['X','Y','Z']] # remove the "total" column in order
# to make the syntax a little cleaner
df = df.head(4) # keep the example more manageable
for i in range(len(df)):
for k in range( i+1, len(df)+1 ):
df_sum = df[i:k].sum()
print( "rows", i, "to", k, (df_sum>0).all() & (df_sum.sum()>10) )
rows 0 to 1 True
rows 0 to 2 True
rows 0 to 3 True
rows 0 to 4 True
rows 1 to 2 False
rows 1 to 3 True
rows 1 to 4 True
rows 2 to 3 True
rows 2 to 4 True
rows 3 to 4 True