Apologies if this question is too easy, I know how to do it in Python but I currently need it in R.
As part of an SQL query I get a variable with some numbers (the lengt
We can extract the first list elements and convrert to numeric
library(stringr)
as.numeric(str_extract_all(x, "[0-9.]+")[[1]])
#[1] 0.50 0.25 0.75 0.50
Or with base R
using regmatches/regexpr
as.numeric(regmatches(x, gregexpr("[0-9.]+", x))[[1]])
#[1] 0.50 0.25 0.75 0.50
Or with scan
after removing the curly brackets
scan(text= gsub("[{}]", "", x), what = numeric(), sep="," , quiet = TRUE)
You can try using gsub
to first replace {
and }
and then split in vector using strsplit
. Finally, convert it to numeric as:
x <- "{0.5,0.25,0.75,0.5}"
as.numeric(strsplit(gsub("[{}]","",x), split = ",")[[1]])
#[1] 0.50 0.25 0.75 0.50
You can do this in base R as
as.numeric(strsplit(substr(x, 2, nchar(x) - 1), ',')[[1]])
or
as.numeric(strsplit(gsub('[{]|[}]', '', x), ',')[[1]])
You can also use scan
:
scan(text=substr(x,2,nchar(x)-1),sep=",")
[1] 0.50 0.25 0.75 0.50
Not sure if performance is a concern but I was curious so here's a benchmark:
on longer string:
x <- paste0("{",paste(1:1e4,collapse=","),"}")
as.numeric(str_extract_all(x, "[0-9.]+")[[1]])
library(stringr)
microbenchmark::microbenchmark(
ak1 = as.numeric(str_extract_all(x, "[0-9.]+")[[1]]),
ak2 = as.numeric(regmatches(x, gregexpr("[0-9.]+", x))[[1]]),
ak3 = scan(text= gsub("[{}]", "", x), what = numeric(), sep="," , quiet = TRUE),
mkr = as.numeric(strsplit(gsub("[{}]","",x), split = ",")[[1]]),
sat = as.numeric(unlist( strsplit( gsub("[^0-9.,]", "", x), ",") ) ),
ry1 = as.numeric(strsplit(substr(x, 2, nchar(x) - 1), ',')[[1]]),
ry2 = as.numeric(strsplit(gsub('[{]|[}]', '', x), ',')[[1]]),
mm = scan(text=substr(x,2,nchar(x)-1),sep=",", quiet = TRUE),
unit = "relative"
)
# Unit: relative
# expr min lq mean median uq max neval
# ak1 1.083862 1.081196 1.024354 1.075517 1.056627 0.3696952 100
# ak2 20.581096 19.829962 18.775549 19.599953 19.307974 5.7053902 100
# ak3 1.309869 1.313783 1.258867 1.314094 1.322486 0.3918785 100
# mkr 2.817353 2.765637 2.682597 2.761487 2.719283 0.9331140 100
# sat 2.908291 2.871177 2.784193 2.871431 2.815423 1.4278423 100
# ry1 2.521181 2.463614 2.329599 2.456323 2.423078 0.6853562 100
# ry2 2.932874 2.859785 2.778728 2.865958 2.828777 0.8790090 100
# mm 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 100
on original short string:
# Unit: relative
# expr min lq mean median uq max neval
# ak1 2.183908 2.520 2.513167 2.445887 2.464 4.383178 100
# ak2 3.574713 3.625 3.573718 3.432900 3.412 6.752336 100
# ak3 5.114943 4.860 4.746448 4.532468 4.620 5.981308 100
# mkr 1.425287 1.360 1.344941 1.285714 1.336 1.355140 100
# sat 1.873563 1.810 1.783697 1.753247 1.736 2.121495 100
# ry1 1.000000 1.000 1.000000 1.000000 1.000 1.000000 100
# ry2 1.471264 1.415 1.359581 1.354978 1.336 1.074766 100
# mm 4.390805 4.400 4.314622 4.134199 4.224 6.682243 100