I am having some trouble filtering a pandas dataframe on a column (let\'s call it column_1) whose data type is a list. Specifically, I want to return only rows such that co
consider the pd.Series
s
s = pd.Series([[1, 2, 3], list('abcd'), [9, 8, 3], ['a', 4]])
print(s)
0 [1, 2, 3]
1 [a, b, c, d]
2 [9, 8, 3]
3 [a, 4]
dtype: object
And a testing list test
test = ['b', 3, 4]
Apply a lambda
function that converts each element of s
to a set and intersection
with test
print(s.apply(lambda x: list(set(x).intersection(test))))
0 [3]
1 [b]
2 [3]
3 [4]
dtype: object
To use it as a mask, use bool
instead of list
s.apply(lambda x: bool(set(x).intersection(test)))
0 True
1 True
2 True
3 True
dtype: bool
Hi for long term use you can wrap the whole work flow in functions and apply the functions where you need. As you did not put any example dataset. I am taking an example data set and resolving it. Considering I have text database. First I will find the #tags into a list then I will search the only #tags I want and filter the data.
# find all the tags in the message
def find_hashtags(post_msg):
combo = r'#\w+'
rx = re.compile(combo)
hash_tags = rx.findall(post_msg)
return hash_tags
# find the requered match according to a tag list and return true or false
def match_tags(tag_list, htag_list):
matched_items = bool(set(tag_list).intersection(htag_list))
return matched_items
test_data = [{'text': 'Head nipid mõnusateks sõitudeks kitsastel tänavatel. #TipStop'},
{'text': 'Homses Rooli Võimus uus #Peugeot208!\nVaata kindlasti.'},
{'text': 'Soovitame ennast tulevikuks ette valmistada, electric car sest uus #PeugeotE208 on peagi kohal! ⚡️⚡️\n#UnboringTheFuture'},
{'text': "Aeg on täiesti uueks roadtrip'i kogemuseks! \nLase ennast üllatada - #Peugeot5008!"},
{'text': 'Tõeline ikoon, mille stiil avaldab muljet läbi eco car, electric cars generatsioonide #Peugeot504!'}
]
test_df = pd.DataFrame(test_data)
# find all the hashtags
test_df["hashtags"] = test_df["text"].apply(lambda x: find_hashtags(x))
# the only hashtags we are interested
tag_search = ["#TipStop", "#Peugeot208"]
# match the tags in our list
test_df["tag_exist"] = test_df["hashtags"].apply(lambda x: match_tags(x, tag_search))
# filter the data
main_df = test_df[test_df.tag_exist]