I want to rescale all variables (but year
and gender
) in a df
by one specific year
, grouped by gender
:
Use position in mutate_at
library(dplyr)
df %>%
group_by(gender) %>%
mutate_at(-c(1, 2), ~ifelse(year == 3, 0, . - .[year == 3]))
# gender year var_a var_b
# <fct> <int> <dbl> <dbl>
# 1 m 1 -2 -2
# 2 m 2 -1 -1
# 3 m 3 0 0
# 4 m 4 1 1
# 5 m 5 2 2
# 6 f 1 -2 -2
# 7 f 2 -1 -1
# 8 f 3 0 0
# 9 f 4 1 1
#10 f 5 2 2
In case, if you do not know the position of columns beforehand you can first find it
cols <- which(names(df) %in% c("gender", "year"))
df %>%
group_by(gender) %>%
mutate_at(-cols, ~ifelse(year == 3, 0, . - .[year == 3]))
Or select columns which starts_with
df %>%
group_by(gender) %>%
mutate_at(vars(starts_with("var")), ~ifelse(year == 3, 0, . - .[year == 3]))
If you add a ~
before the function you should get the wanted output.
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
set.seed(1)
df <- data.frame(gender = c(rep("m", 5),
rep("f", 5)),
year = rep(1:5, 2), var_a = 1:10, var_b = 0:9)
df
#> gender year var_a var_b
#> 1 m 1 1 0
#> 2 m 2 2 1
#> 3 m 3 3 2
#> 4 m 4 4 3
#> 5 m 5 5 4
#> 6 f 1 6 5
#> 7 f 2 7 6
#> 8 f 3 8 7
#> 9 f 4 9 8
#> 10 f 5 10 9
df %>%
group_by(gender) %>%
mutate_at(vars(-gender, -year),
~ifelse(year == 3, 0, . - .[year == 3]))
#> # A tibble: 10 x 4
#> # Groups: gender [2]
#> gender year var_a var_b
#> <fct> <int> <dbl> <dbl>
#> 1 m 1 -2 -2
#> 2 m 2 -1 -1
#> 3 m 3 0 0
#> 4 m 4 1 1
#> 5 m 5 2 2
#> 6 f 1 -2 -2
#> 7 f 2 -1 -1
#> 8 f 3 0 0
#> 9 f 4 1 1
#> 10 f 5 2 2
Created on 2019-04-29 by the reprex package (v0.2.1)
EDIT:
In older versions of dplyr you would use funs()
, but it is soft deprecated as of dplyr 0.8.0
df %>%
group_by(gender) %>%
mutate_at(vars(-gender, -year),
funs(ifelse(year == 3, 0, . - .[year == 3])))