To a list of N
points [(x_1,y_1), (x_2,y_2), ... ]
I am trying to find the nearest neighbours to each point based on distance. My dataset is too la
I implemented the solution to this problem and i think it might be helpful.
from collections import namedtuple
from operator import itemgetter
from pprint import pformat
from math import inf
def nested_getter(idx1, idx2):
def g(obj):
return obj[idx1][idx2]
return g
class Node(namedtuple('Node', 'location left_child right_child')):
def __repr__(self):
return pformat(tuple(self))
def kdtree(point_list, depth: int = 0):
if not point_list:
return None
k = len(point_list[0]) # assumes all points have the same dimension
# Select axis based on depth so that axis cycles through all valid values
axis = depth % k
# Sort point list by axis and choose median as pivot element
point_list.sort(key=nested_getter(1, axis))
median = len(point_list) // 2
# Create node and construct subtrees
return Node(
location=point_list[median],
left_child=kdtree(point_list[:median], depth + 1),
right_child=kdtree(point_list[median + 1:], depth + 1)
)
def nns(q, n, p, w, depth: int = 0):
"""
NNS = Nearest Neighbor Search
:param depth:
:param q: point
:param n: node
:param p: ref point
:param w: ref distance
:return: new_p, new_w
"""
new_w = distance(q[1], n.location[1])
# below we test if new_w > 0 because we don't want to allow p = q
if (new_w > 0) and new_w < w:
p, w = n.location, new_w
k = len(p)
axis = depth % k
n_value = n.location[1][axis]
search_left_first = (q[1][axis] <= n_value)
if search_left_first:
if n.left_child and (q[1][axis] - w <= n_value):
new_p, new_w = nns(q, n.left_child, p, w, depth + 1)
if new_w < w:
p, w = new_p, new_w
if n.right_child and (q[1][axis] + w >= n_value):
new_p, new_w = nns(q, n.right_child, p, w, depth + 1)
if new_w < w:
p, w = new_p, new_w
else:
if n.right_child and (q[1][axis] + w >= n_value):
new_p, new_w = nns(q, n.right_child, p, w, depth + 1)
if new_w < w:
p, w = new_p, new_w
if n.left_child and (q[1][axis] - w <= n_value):
new_p, new_w = nns(q, n.left_child, p, w, depth + 1)
if new_w < w:
p, w = new_p, new_w
return p, w
def main():
"""Example usage of kdtree"""
point_list = [(7, 2), (5, 4), (9, 6), (4, 7), (8, 1), (2, 3)]
tree = kdtree(point_list)
print(tree)
def city_houses():
"""
Here we compute the distance to the nearest city from a list of N cities.
The first line of input contains N, the number of cities.
Each of the next N lines contain two integers x and y, which locate the city in (x,y),
separated by a single whitespace.
It's guaranteed that a spot (x,y) does not contain more than one city.
The output contains N lines, the line i with a number representing the distance
for the nearest city from the i-th city of the input.
"""
n = int(input())
cities = []
for i in range(n):
city = i, tuple(map(int, input().split(' ')))
cities.append(city)
# print(cities)
tree = kdtree(cities)
# print(tree)
ans = [(target[0], nns(target, tree, tree.location, inf)[1]) for target in cities]
ans.sort(key=itemgetter(0))
ans = [item[1] for item in ans]
print('\n'.join(map(str, ans)))
def distance(a, b):
# Taxicab distance is used below. You can use squared euclidean distance if you prefer
k = len(b)
total = 0
for i in range(k):
total += abs(b[i] - a[i])
return total
if __name__ == '__main__':
city_houses()
You can use sklearn.neighbors.KDTree
's query_radius() method, which returns a list of the indices of the nearest neighbours within some radius (as opposed to returning k nearest neighbours).
from sklearn.neighbors import KDTree
points = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)]
tree = KDTree(points, leaf_size=2)
all_nn_indices = tree.query_radius(points, r=1.5) # NNs within distance of 1.5 of point
all_nns = [[points[idx] for idx in nn_indices] for nn_indices in all_nn_indices]
for nns in all_nns:
print(nns)
Outputs:
[(1, 1), (2, 2)]
[(1, 1), (2, 2), (3, 3)]
[(2, 2), (3, 3), (4, 4)]
[(3, 3), (4, 4), (5, 5)]
[(4, 4), (5, 5)]
Note that each point includes itself in its list of nearest neighbours within the given radius. If you want to remove these identity points, the line computing all_nns
can be changed to:
all_nns = [
[points[idx] for idx in nn_indices if idx != i]
for i, nn_indices in enumerate(all_nn_indices)
]
Resulting in:
[(2, 2)]
[(1, 1), (3, 3)]
[(2, 2), (4, 4)]
[(3, 3), (5, 5)]
[(4, 4)]
This question is very broad and missing details. It's unclear what you did try, how your data looks like and what a nearest-neighbor is (identity?).
Assuming you are not interested in the identity (with distance 0), you can query the two nearest-neighbors and drop the first column. This is probably the easiest approach here.
import numpy as np
from sklearn.neighbors import KDTree
np.random.seed(0)
X = np.random.random((5, 2)) # 5 points in 2 dimensions
tree = KDTree(X)
nearest_dist, nearest_ind = tree.query(X, k=2) # k=2 nearest neighbors where k1 = identity
print(X)
print(nearest_dist[:, 1]) # drop id; assumes sorted -> see args!
print(nearest_ind[:, 1]) # drop id
[[ 0.5488135 0.71518937]
[ 0.60276338 0.54488318]
[ 0.4236548 0.64589411]
[ 0.43758721 0.891773 ]
[ 0.96366276 0.38344152]]
[ 0.14306129 0.1786471 0.14306129 0.20869372 0.39536284]
[2 0 0 0 1]
The sklearn should be the best. I wrote the below some time back ,where I needed custom distance. (I guess sklearn does not support custom distance fn 'KD tree' with custom distance metric . Adding for reference
Adapted from my gist for 2D https://gist.github.com/alexcpn/1f187f2114976e748f4d3ad38dea17e8
# From https://gist.github.com/alexcpn/1f187f2114976e748f4d3ad38dea17e8
# Author alex punnen
from collections import namedtuple
from operator import itemgetter
import numpy as np
def find_nearest_neighbour(node,point,distance_fn,current_axis):
# Algorith to find nearest neighbour in a KD Tree;the KD tree has done a spatial sort
# of the given co-ordinates, such that to the left of the root lies co-ordinates nearest to the x-axis
# and to the right of the root ,lies the co-ordinates farthest from the x axis
# On the y axis split on the left of the parent/root node lies co-ordinates nearest to the y-axis and to
# the right of the root, lies the co-ordinates farthest from the y axis
# to find the nearest neightbour, from the root, you first check left and right node; if distance is closer
# to the right node,then the entire left node can be discarded from search, because of the spatial split
# and that node becomes the root node. This process is continued recursively till the nearest is found
# param:node: The current node
# param: point: The point to which the nearest neighbour is to be found
# param: distance_fn: to calculate the nearest neighbour
# param: current_axis: here assuming only two dimenstion and current axis will be either x or y , 0 or 1
if node is None:
return None,None
current_closest_node = node
closest_known_distance = distance_fn(node.cell[0],node.cell[1],point[0],point[1])
print closest_known_distance,node.cell
x = (node.cell[0],node.cell[1])
y = point
new_node = None
new_closest_distance = None
if x[current_axis] > y[current_axis]:
new_node,new_closest_distance= find_nearest_neighbour(node.left_branch,point,distance_fn,
(current_axis+1) %2)
else:
new_node,new_closest_distance = find_nearest_neighbour(node.right_branch,point,distance_fn,
(current_axis+1) %2)
if new_closest_distance and new_closest_distance < closest_known_distance:
print 'Reset closest node to ',new_node.cell
closest_known_distance = new_closest_distance
current_closest_node = new_node
return current_closest_node,closest_known_distance
class Node(namedtuple('Node','cell, left_branch, right_branch')):
# This Class is taken from wikipedia code snippet for KD tree
pass
def create_kdtree(cell_list,current_axis,no_of_axis):
# Creates a KD Tree recursively following the snippet from wikipedia for KD tree
# but making it generic for any number of axis and changes in data strucure
if not cell_list:
return
# get the cell as a tuple list this is for 2 dimensions
k= [(cell[0],cell[1]) for cell in cell_list]
# say for three dimension
# k= [(cell[0],cell[1],cell[2]) for cell in cell_list]
k.sort(key=itemgetter(current_axis)) # sort on the current axis
median = len(k) // 2 # get the median of the list
axis = (current_axis + 1) % no_of_axis # cycle the axis
return Node(k[median], # recurse
create_kdtree(k[:median],axis,no_of_axis),
create_kdtree(k[median+1:],axis,no_of_axis))
def eucleaden_dist(x1,y1,x2,y2):
a= np.array([x1,y1])
b= np.array([x2,y2])
dist = np.linalg.norm(a-b)
return dist
np.random.seed(0)
#cell_list = np.random.random((2, 2))
#cell_list = cell_list.tolist()
cell_list = [[2,2],[4,8],[10,2]]
print(cell_list)
tree = create_kdtree(cell_list,0,2)
node,distance = find_nearest_neighbour(tree,(1, 1),eucleaden_dist,0)
print 'Nearest Neighbour=',node.cell,distance
node,distance = find_nearest_neighbour(tree,(8, 1),eucleaden_dist,0)
print 'Nearest Neighbour=',node.cell,distance