I have imported data in Spark dataframe in spark-shell. Data is filled in it like :
Col1 | Col2 | Col3 | Col4
A1 | 11 | B2 | a|b;1;0xFFFFFF
A1 | 12
Edit after getting this answer about how to make backreference in regexp_replace
.
You can use regexp_replace
with a backreference, then split
twice and explode
. It is, imo, cleaner than my original solution
val df = List(
("A1" , "11" , "B2" , "a|b;1;0xFFFFFF"),
("A1" , "12" , "B1" , "2"),
("A2" , "12" , "B2" , "0xFFF45B")
).toDF("Col1" , "Col2" , "Col3" , "Col4")
val regExStr = "^([A-z|]+)?;?(\\d+)?;?(0x.*)?$"
val res = df
.withColumn("backrefReplace",
split(regexp_replace('Col4,regExStr,"$1;$2;$3"),";"))
.select('Col1,'Col2,'Col3,
explode(split('backrefReplace(0),"\\|")).as("letter"),
'backrefReplace(1) .as("digits"),
'backrefReplace(2) .as("hexadecimal")
)
+----+----+----+------+------+-----------+
|Col1|Col2|Col3|letter|digits|hexadecimal|
+----+----+----+------+------+-----------+
| A1| 11| B2| a| 1| 0xFFFFFF|
| A1| 11| B2| b| 1| 0xFFFFFF|
| A1| 12| B1| | 2| |
| A2| 12| B2| | | 0xFFF45B|
+----+----+----+------+------+-----------+
you still need to replace empty strings by null
though...
Here is a solution that sticks to DataFrames but is also quite messy. You can first use regexp_extract
three times (possible to do less with backreference?), and finally split
on "|" and explode
. Note that you need a coalesce for explode
to return everything (you still might want to change the empty strings in letter
to null
in this solution).
val res = df
.withColumn("alphabets", regexp_extract('Col4,"(^[A-z|]+)?",1))
.withColumn("digits", regexp_extract('Col4,"^([A-z|]+)?;?(\\d+)?;?(0x.*)?$",2))
.withColumn("hexadecimal",regexp_extract('Col4,"^([A-z|]+)?;?(\\d+)?;?(0x.*)?$",3))
.withColumn("letter",
explode(
split(
coalesce('alphabets,lit("")),
"\\|"
)
)
)
res.show
+----+----+----+--------------+---------+------+-----------+------+
|Col1|Col2|Col3| Col4|alphabets|digits|hexadecimal|letter|
+----+----+----+--------------+---------+------+-----------+------+
| A1| 11| B2|a|b;1;0xFFFFFF| a|b| 1| 0xFFFFFF| a|
| A1| 11| B2|a|b;1;0xFFFFFF| a|b| 1| 0xFFFFFF| b|
| A1| 12| B1| 2| null| 2| null| |
| A2| 12| B2| 0xFFF45B| null| null| 0xFFF45B| |
+----+----+----+--------------+---------+------+-----------+------+
Note: The regexp part could be so much better with backreference, so if somebody knows how to do it, please comment!
Not sure this is doable while staying 100% with Dataframes, here's a (somewhat messy?) solution using RDDs for the split itself:
import org.apache.spark.sql.functions._
import sqlContext.implicits._
// we switch to RDD to perform the split of Col4 into 3 columns
val rddWithSplitCol4 = input.rdd.map { r =>
val indexToValue = r.getAs[String]("Col4").split(';').map {
case s if s.startsWith("0x") => 2 -> s
case s if s.matches("\\d+") => 1 -> s
case s => 0 -> s
}
val newCols: Array[String] = indexToValue.foldLeft(Array.fill[String](3)("")) {
case (arr, (index, value)) => arr.updated(index, value)
}
(r.getAs[String]("Col1"), r.getAs[Int]("Col2"), r.getAs[String]("Col3"), newCols(0), newCols(1), newCols(2))
}
// switch back to Dataframe and explode alphabets column
val result = rddWithSplitCol4
.toDF("Col1", "Col2", "Col3", "alphabets", "digits", "hexadecimal")
.withColumn("alphabets", explode(split(col("alphabets"), "\\|")))
result.show(truncate = false)
// +----+----+----+---------+------+-----------+
// |Col1|Col2|Col3|alphabets|digits|hexadecimal|
// +----+----+----+---------+------+-----------+
// |A1 |11 |B2 |a |1 |0xFFFFFF |
// |A1 |11 |B2 |b |1 |0xFFFFFF |
// |A1 |12 |B1 | |2 | |
// |A2 |12 |B2 | | |0xFFF45B |
// +----+----+----+---------+------+-----------+