I have a matrix (named ichimoku) with 516 rows and 2 columns ,each one of them containing values to be plotted, the goal is to recreate the clouds for the Ichimoku strategy.
Here is some code that works for a simple version of your problem, in which the lines only cross once. I haven't tested it for repeated crossings, however.
# Make toy data
ichimoku <- data.frame(senkouA = rep(10, 10), senkouB = c(3, 5, 4, 7, 10, 11, 15, 12, 13, 14))
# Make indices for the conditions that define the fill colors. They need to intersect for the polygons to connect.
index.green = with(ichimoku, as.logical(senkouA >= senkouB))
index.red = with(ichimoku, as.logical(senkouA <= senkouB))
# Make the line plot
matplot(ichimoku, lty=1, lwd=1, pch=20, type="l", col=c("red","blue"))
# Now add polygons with fill color based on those conditions by subsetting the task using the indices.
with(ichimoku, polygon(x = c(seq(length(senkouA))[index.green], rev(seq(length(senkouA))[index.green])),
y = c(senkouB[index.green], senkouA[index.green]), col = "green"))
with(ichimoku, polygon(x = c(seq(length(senkouA))[index.red], rev(seq(length(senkouA))[index.red])),
y = c(senkouB[index.red], senkouA[index.red]), col = "red"))
Here's my result:
If you find the intersections between the curves, then you can draw the polygons between the intersections. Here is a modification of a previous post where they find intersections between curves, and a function to draw the polygons.
## Some sample data
set.seed(0)
dat <- data.frame(x1=3*sin(3*(x=seq(0,10,len=100)))+rnorm(100),
x2=2*cos(x)+rnorm(100))
## https://stackoverflow.com/questions/20519431/finding-point-of-intersection-in-r
intersects <- function(x1, x2) {
seg1 <- which(!!diff(x1 > x2)) # location of first point in crossing segments
above <- x2[seg1] > x1[seg1] # which curve is above prior to crossing
slope1 <- x1[seg1+1] - x1[seg1]
slope2 <- x2[seg1+1] - x2[seg1]
x <- seg1 + ((x2[seg1] - x1[seg1]) / (slope1 - slope2))
y <- x1[seg1] + slope1*(x - seg1)
data.frame(x=x, y=y, pindex=seg1, pabove=(1:2)[above+1L]) # pabove is greater curve prior to crossing
}
ichimoku <- function(data, addLines=TRUE) {
## Find points of intersections
ints <- intersects(data[,1], data[,2])
intervals <- findInterval(1:nrow(data), c(0, ints$x))
## Make plot
matplot(data, type="n", col=2:3, lty=1, lwd=4)
legend("topright", c("A", "B"), col=3:2, lty=1, lwd=2)
## Draw the polygons
for (i in seq_along(table(intervals))) {
xstart <- ifelse(i == 1, 0, ints$x[i-1])
ystart <- ifelse(i == 1, dat[1,ints$pindex[1]], ints$y[i-1])
xend <- ints$x[i]
yend <- ints$y[i]
x <- seq(nrow(data))[intervals == i]
polygon(c(xstart, x, xend, rev(x)), c(ystart, data[x,1], yend, rev(data[x,2])),
col=ints$pabove[i]%%2+2)
}
## Add lines for curves
if (addLines)
invisible(lapply(1:2, function(x) lines(seq(nrow(data)), data[,x], col=x%%2+2, lwd=2)))
}
## Plot the data
ichimoku(dat)