Swap zeros in numpy matrix

后端 未结 6 1178
眼角桃花
眼角桃花 2021-01-20 13:08

I have a numpy matrix like so:

array([[2,  1, 23, 32],
       [34, 3, 3, 0],
       [3, 33, 0, 0],
       [32, 0, 0, 0]], dtype=int32)

Now

相关标签:
6条回答
  • 2021-01-20 13:45

    Here's a vectorized approach with masking -

    valid_mask = a!=0
    flipped_mask = valid_mask.sum(1,keepdims=1) > np.arange(a.shape[1]-1,-1,-1)
    a[flipped_mask] = a[valid_mask]
    a[~flipped_mask] = 0
    

    Sample run -

    In [90]: a
    Out[90]: 
    array([[ 2,  1, 23, 32],
           [34,  0,  3,  0],  # <== Added a zero in between for variety
           [ 3, 33,  0,  0],
           [32,  0,  0,  0]])
    
    # After code run -
    
    In [92]: a
    Out[92]: 
    array([[ 2,  1, 23, 32],
           [ 0,  0, 34,  3],
           [ 0,  0,  3, 33],
           [ 0,  0,  0, 32]])
    

    One more generic sample run -

    In [94]: a
    Out[94]: 
    array([[1, 1, 2, 3, 1, 0, 3, 0, 2, 1],
           [2, 1, 0, 1, 2, 0, 1, 3, 1, 1],
           [1, 2, 0, 3, 0, 3, 2, 0, 2, 2]])
    
    # After code run -
    
    In [96]: a
    Out[96]: 
    array([[0, 0, 1, 1, 2, 3, 1, 3, 2, 1],
           [0, 0, 2, 1, 1, 2, 1, 3, 1, 1],
           [0, 0, 0, 1, 2, 3, 3, 2, 2, 2]])
    

    Runtime test

    Approaches that work on generic cases -

    # Proposed in this post
    def masking_based(a):
        valid_mask = a!=0
        flipped_mask = valid_mask.sum(1,keepdims=1) > np.arange(a.shape[1]-1,-1,-1)
        a[flipped_mask] = a[valid_mask]
        a[~flipped_mask] = 0
        return a
    
    # @Psidom's soln            
    def sort_based(a):
        return a[np.arange(a.shape[0])[:, None], (a != 0).argsort(1, kind="mergesort")]
    

    Timings -

    In [205]: a = np.random.randint(0,4,(1000,1000))
    
    In [206]: %timeit sort_based(a)
    10 loops, best of 3: 30.8 ms per loop
    
    In [207]: %timeit masking_based(a)
    100 loops, best of 3: 6.46 ms per loop
    
    In [208]: a = np.random.randint(0,4,(5000,5000))
    
    In [209]: %timeit sort_based(a)
    1 loops, best of 3: 961 ms per loop
    
    In [210]: %timeit masking_based(a)
    1 loops, best of 3: 151 ms per loop
    
    0 讨论(0)
  • 2021-01-20 13:52

    Trivial attempt in non-numpy based python -

    >>> arr = [[2,  1, 23, 32],
    ...        [34, 3, 3, 0],
    ...        [3, 33, 0, 0],
    ...        [32, 0, 0, 0]]
    ... 
    >>> t_arr = [[0 for _ in range(cur_list.count(0))]\
                + [i for i in cur_list if i!=0]\
                for cur_list in arr]
    >>> t_arr
    [[2, 1, 23, 32], [0, 34, 3, 3], [0, 0, 3, 33], [0, 0, 0, 32]]
    
    0 讨论(0)
  • 2021-01-20 13:55

    You can also perform sorting on the masked array with the help of numpy.ma.sort() that sorts the array in-place along the last axis, axis=-1 as shown:

    np.ma.array(a, mask=a!=0).sort()
    

    Now a becomes:

    array([[ 2,  1, 23, 32],
           [ 0, 34,  3,  3],
           [ 0,  0,  3, 33],
           [ 0,  0,  0, 32]])
    

    The only downside is that it is not as fast as some of the approaches mentioned above but nevertheless a short one-liner to have.

    0 讨论(0)
  • 2021-01-20 13:57

    A row roll based solution, in the spirit of @EDChum's pandas version:

    def rowroll(arr):
        for row in arr:
            row[:] = np.roll(row,-np.count_nonzero(row))
        return arr
    In [221]: rowroll(arr.copy())
    Out[221]: 
    array([[ 2,  1, 23, 32],
           [ 0, 34,  3,  3],
           [ 0,  0,  3, 33],
           [ 0,  0,  0, 32]])
    

    np.count_nonzero is a fast compiled way of finding the number of nonzeros. It is used by np.where to find its return size.

    But looking at the np.roll code, I think it's overly complicated for the task, since it can work with several axes.

    This looks messier, but I suspect it's as fast, if not faster than roll:

    def rowroll(arr):
        for row in arr:
            n = np.count_nonzero(row)
            temp = np.zeros_like(row)
            temp[-n:] = row[:n]
            row[:] = temp
        return arr
    

    The roll solutions require trailing 0s in the original, not scattered 0s.

    0 讨论(0)
  • 2021-01-20 13:58

    pandas method:

    In [181]:
    # construct df from array
    df = pd.DataFrame(a)
    # call apply and call np.roll rowise and roll by the number of zeroes
    df.apply(lambda x: np.roll(x, (x == 0).sum()), axis=1).values
    
    Out[181]:
    array([[ 2,  1, 23, 32],
           [ 0, 34,  3,  3],
           [ 0,  0,  3, 33],
           [ 0,  0,  0, 32]])
    

    This uses apply so we can call np.roll on each row by the number of zeroes in each row

    0 讨论(0)
  • 2021-01-20 14:11

    You can also use numpy.argsort with advanced indexing:

    arr[np.arange(arr.shape[0])[:, None], (arr != 0).argsort(1, kind="mergesort")]
    
    #array([[ 2,  1, 23, 32],
    #       [ 0, 34,  3,  3],
    #       [ 0,  0,  3, 33],
    #       [ 0,  0,  0, 32]], dtype=int32)
    
    0 讨论(0)
提交回复
热议问题