I\'m trying to reshape a numpy array using numpy.strided_tricks
. This is the guide I\'m following: https://stackoverflow.com/a/2487551/4909087
My use c
The accepted answer (and discussion) is good, but for the benefit of readers who don't want to run their own test case, I'll try to illustrate what's going on:
In [374]: a = np.arange(1,10)
In [375]: as_strided = np.lib.stride_tricks.as_strided
In [376]: a.shape
Out[376]: (9,)
In [377]: a.strides
Out[377]: (4,)
For a contiguous 1d array, strides
is the size of the element, here 4 bytes, an int32. To go from one element to the next it steps forward 4 bytes.
What the OP tried:
In [380]: as_strided(a, shape=(7,3), strides=(3,3))
Out[380]:
array([[ 1, 512, 196608],
[ 512, 196608, 67108864],
[ 196608, 67108864, 4],
[ 67108864, 4, 1280],
[ 4, 1280, 393216],
[ 1280, 393216, 117440512],
[ 393216, 117440512, 7]])
This is stepping by 3 bytes, crossing int32 boundaries, and giving mostly unintelligable numbers. If might make more sense if the dtype had been bytes or uint8.
Instead using a.strides*2
(tuple replication), or (4,4)
we get the desired array:
In [381]: as_strided(a, shape=(7,3), strides=(4,4))
Out[381]:
array([[1, 2, 3],
[2, 3, 4],
[3, 4, 5],
[4, 5, 6],
[5, 6, 7],
[6, 7, 8],
[7, 8, 9]])
Columns and rows both step one element, resulting in a 1 step moving window. We could have also set shape=(3,7)
, 3 windows 7 elements long.
In [382]: _.strides
Out[382]: (4, 4)
Changing strides to (8,4) steps 2 elements for each window.
In [383]: as_strided(a, shape=(7,3), strides=(8,4))
Out[383]:
array([[ 1, 2, 3],
[ 3, 4, 5],
[ 5, 6, 7],
[ 7, 8, 9],
[ 9, 25, -1316948568],
[-1316948568, 184787224, -1420192452],
[-1420192452, 0, 0]])
But shape is off, showing us bytes off the end of the original databuffer. That could be dangerous (we don't know if those bytes belong to some other object or array). With this size of array we don't get a full set of 2 step windows.
Now step 3 elements for each row (3*4, 4):
In [384]: as_strided(a, shape=(3,3), strides=(12,4))
Out[384]:
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
In [385]: a.reshape(3,3).strides
Out[385]: (12, 4)
This is the same shape and strides as a 3x3 reshape.
We can set negative stride values and 0 values. In fact, negative-step slicing along a dimension with a positive stride will give a negative stride, and broadcasting works by setting 0 strides:
In [399]: np.broadcast_to(a, (2,9))
Out[399]:
array([[1, 2, 3, 4, 5, 6, 7, 8, 9],
[1, 2, 3, 4, 5, 6, 7, 8, 9]])
In [400]: _.strides
Out[400]: (0, 4)
In [401]: a.reshape(3,3)[::-1,:]
Out[401]:
array([[7, 8, 9],
[4, 5, 6],
[1, 2, 3]])
In [402]: _.strides
Out[402]: (-12, 4)
However, negative strides require adjusting which element of the original array is the first element of the view, and as_strided
has no parameter for that.
I have no idea why you think you need strides of 3. You need strides the distance in bytes between one element of a
and the next, which you can get using a.strides
:
as_strided(a, (len(a) - 2, 3), a.strides*2)
I was trying to do a similar operation and run into the same problem.
In your case, as stated in this comment, the problems were:
I made myself a function based on this answer, in which I compute the segmentation of a given array, using a window of n-elements and specifying the number of elements to overlap (given by window - number_of_elements_to_skip).
I share it here in case someone else needs it, since it took me a while to figure out how stride_tricks work:
def window_signal(signal, window, overlap):
"""
Windowing function for data segmentation.
Parameters:
------------
signal: ndarray
The signal to segment.
window: int
Window length, in samples.
overlap: int
Number of samples to overlap
Returns:
--------
nd-array
A copy of the signal array with shape (rows, window),
where row = (N-window)//(window-overlap) + 1
"""
N = signal.reshape(-1).shape[0]
if (window == overlap):
rows = N//window
overlap = 0
else:
rows = (N-window)//(window-overlap) + 1
miss = (N-window)%(window-overlap)
if(miss != 0):
print('Windowing led to the loss of ', miss, ' samples.')
item_size = signal.dtype.itemsize
strides = (window - overlap) * item_size
return np.lib.stride_tricks.as_strided(signal, shape=(rows, window),
strides=(strides, item_size))
The solution for this case is, according to your code:
as_strided(a, (len(a) - 2, 3), (4, 4))
Alternatively, using the function window_signal:
window_signal(a, 3, 2)
Both return as output the following array:
array([[1, 2, 3],
[2, 3, 4],
[3, 4, 5],
[4, 5, 6],
[5, 6, 7],
[6, 7, 8],
[7, 8, 9]])