select maximum row value by group

前端 未结 5 1109
醉梦人生
醉梦人生 2021-01-20 07:53

I\'ve been trying to do this with my data by looking at other posts, but I keep getting an error. My data new looks like this:

id  year    name          


        
相关标签:
5条回答
  • 2021-01-20 07:55

    Just use split:

    df <- do.call(rbind, lapply(split(df, df$id),
      function(subdf) subdf[which.max(subdf$year)[1], ]))
    

    For example,

    df <- data.frame(id = rep(1:10, each = 3), year = round(runif(30,0,10)) + 1980, gdp = round(runif(30, 40, 70)))
    print(head(df))
    #   id year gdp
    # 1  1 1990  49
    # 2  1 1981  47
    # 3  1 1987  69
    # 4  2 1985  57
    # 5  2 1989  41
    # 6  2 1988  54
    
    df <- do.call(rbind, lapply(split(df, df$id), function(subdf) subdf[which.max(subdf$year)[1], ]))
    print(head(df))
    #    id year gdp
    # 1   1 1990  49
    # 2   2 1989  41
    # 3   3 1989  55
    # 4   4 1988  62
    # 5   5 1989  48
    # 6   6 1990  41
    
    0 讨论(0)
  • 2021-01-20 07:55

    Your ddply effort looks good to me, but you referenced the original dataset in the callback function.

    ddply(new,~id,function(x){x[which.max(new$year),]})
    # should be
    ddply(new,.(id),function(x){x[which.max(x$year),]})
    
    0 讨论(0)
  • ave works here yet again, and will account for a circumstance with multiple rows for the maximum year.

    new[with(new, year == ave(year,id,FUN=max) ),]
    
    #  id year  name gdp
    #3  1 1982 Jamie  70
    #6  2 1992  Kate  67
    #9  3 1996   Joe  90
    
    0 讨论(0)
  • 2021-01-20 08:05

    Another option that scales well for large tables is using data.table.

    DT <- read.table(text = "id  year    name    gdp
                              1   1980    Jamie   45
                              1   1981    Jamie   60
                              1   1982    Jamie   70
                              2   1990    Kate    40
                              2   1991    Kate    25
                              2   1992    Kate    67
                              3   1994    Joe     35
                              3   1995    Joe     78
                              3   1996    Joe     90",
                     header = TRUE)
    
    require("data.table")
    DT <- as.data.table(DT)
    
    setkey(DT,id,year)
    res = DT[,j=list(year=year[which.max(gdp)]),by=id]
    res
    
    setkey(res,id,year)
    DT[res]
    # id year  name gdp
    # 1:  1 1982 Jamie  70
    # 2:  2 1992  Kate  67
    # 3:  3 1996   Joe  90
    
    0 讨论(0)
  • 2021-01-20 08:13

    You can do this with duplicated

    # your data
     df <- read.table(text="id  year    name    gdp
    1   1980    Jamie   45
    1   1981    Jamie   60
    1   1982    Jamie   70
    2   1990    Kate    40
    2   1991    Kate    25
    2   1992    Kate    67
    3   1994    Joe     35
    3   1995    Joe     78
    3   1996    Joe     90" , header=TRUE)
    
    # Sort by id and year (latest year is last for each id)
    df <- df[order(df$id , df$year), ]
    
    # Select the last row by id
    df <- df[!duplicated(df$id, fromLast=TRUE), ]
    
    0 讨论(0)
提交回复
热议问题