An example dataframe with categorical variables catA, catB, and catC. Obs is some observed value.
catA <- rep(factor(c(\"a\",\"b\",\"c\")), length.out=10
Using only vectorized functions and base R
# Find all possible subsets of your data
combVars <- c("catA", "catB", "catC")
subsets <- lapply(0:length(combVars), combn, x = combVars, simplify = FALSE)
subsets <- do.call(c, subsets)
# Calculate means by each subset
meanValues <- lapply(subsets, function(x) aggregate(dat[["obs"]], by = dat[x], FUN = mean))
# Pull them all into one dataframe
Reduce(function(x,y) merge(x,y,all=TRUE), meanValues)
This isn't the cleanest solution, but I think it gets close to what you want.
getAllSubs <- function(df, lookup, fun) {
out <- lapply(1:nrow(lookup), function(i) {
df_new <- df
if(length(na.omit(unlist(lookup[i,]))) > 0) {
for(j in colnames(lookup)[which(!is.na(unlist(lookup[i,])))]) {
df_new <- df_new[df_new[,j] == lookup[i,j],]
}
}
fun(df_new)
})
if(mean(sapply(out, length) ==1) == 1) {
out <- unlist(out)
} else {
out <- do.call("rbind", out)
}
final <- cbind(lookup, out)
final[is.na(final)] <- NA
final
}
As it is currently written you have to construct the lookup table beforehand, but you could just as easily move that construction into the function itself. I added a few lines at the end to make sure it could accomodate outputs of different lengths and so NaNs were turned into NAs, just because that seemed to create a cleaner output. As it is currently written, it applies the function to the entire original data frame in cases where all columns are NA.
dat_out <- getAllSubs(dat, allsubs, function(x) mean(x$obs, na.rm = TRUE))
head(dat_out,20)
catA catB catC out
1 <NA> <NA> <NA> 47.25446
2 a <NA> <NA> 51.54226
3 b <NA> <NA> 46.45352
4 c <NA> <NA> 43.63767
5 <NA> 1 <NA> 47.23872
6 a 1 <NA> 66.59281
7 b 1 <NA> 32.03513
8 c 1 <NA> 40.66896
9 <NA> 2 <NA> 45.16588
10 a 2 <NA> 50.59323
11 b 2 <NA> 51.02013
12 c 2 <NA> 33.15251
13 <NA> 3 <NA> 51.67809
14 a 3 <NA> 48.13645
15 b 3 <NA> 57.92084
16 c 3 <NA> 49.27710
17 <NA> 4 <NA> 44.93515
18 a 4 <NA> 40.36266
19 b 4 <NA> 44.26717
20 c 4 <NA> 50.74718
ans <- with(dat, tapply(obs, list(catA, catB, catC), mean))
ans <- data.frame(expand.grid(dimnames(ans)), results=c(ans))
names(ans)[1:3] <- names(dat)[1:3]
str(ans)
# 'data.frame': 36 obs. of 4 variables:
# $ catA : Factor w/ 3 levels "a","b","c": 1 2 3 1 2 3 1 2 3 1 ...
# $ catB : Factor w/ 4 levels "1","2","3","4": 1 1 1 2 2 2 3 3 3 4 ...
# $ catC : Factor w/ 3 levels "d","e","f": 1 1 1 1 1 1 1 1 1 1 ...
# $ results: num 69.7 NA NA 55.3 NA ...
An alternative approach, one function to get all combinations of variables and another to apply a function over all subsets. The combinations function was stolen from another post...
## return all combinations of vector up to maximum length n
multicombn <- function(dat, n) {
unlist(lapply(1:n, function(x) combn(dat, x, simplify=F)), recursive=F)
}
For allsubs, vars is of form c("catA","catB","catC"), out.name = "mean".
func needs to be written in form that ddply would take,
func=function(x) mean(x$obs, na.rm=TRUE)
library(plyr)
allsubs <- function(indat, vars, func=NULL, out.name=NULL) {
results <- data.frame()
nvars <- rev(multicombn(vars,length(vars)))
for(i in 1:length(nvars)) {
results <-
rbind.fill(results, ddply(indat, unlist(nvars[i]), func))
}
if(!missing(out.name)) names(results)[length(vars)+1] <- out.name
results
}
One difference between this answer and shwaund's, this does not return rows for empty subsets, so no NAs in results column.
allsubs(dat, c("catA","catB","catc"), func, out.name="mean")
> head(allsubs(dat, vars, func, out.name = "mean"),20)
catA catB catC mean
1 a 1 d 56.65909
2 a 2 d 54.98116
3 a 3 d 37.52655
4 a 4 d 58.29034
5 b 1 e 52.88945
6 b 2 e 50.43122
7 b 3 e 52.57115
8 b 4 e 59.45348
9 c 1 f 52.41637
10 c 2 f 34.58122
11 c 3 f 46.80256
12 c 4 f 51.58668
13 <NA> 1 d 56.65909
14 <NA> 1 e 52.88945
15 <NA> 1 f 52.41637
16 <NA> 2 d 54.98116
17 <NA> 2 e 50.43122
18 <NA> 2 f 34.58122
19 <NA> 3 d 37.52655
20 <NA> 3 e 52.57115