How do I count the values from a pandas column which is a list of strings?

前端 未结 5 2016
名媛妹妹
名媛妹妹 2021-01-19 21:53

I have a dataframe column which is a list of strings:

df[\'colors\']

0              [\'blue\',\'green\',\'brown\']
1              []
2              [\'green\         


        
相关标签:
5条回答
  • 2021-01-19 21:58

    You can use Counter from the collections module:

    import pandas as pd
    from collections import Counter
    from  itertools import chain
    
    df = pd.DataFrame({'colors':[['blue','green','brown'],
                                 [],
                                 ['green','red','blue'],
                                 ['purple'],
                                 ['brown']]})
    
    df = pd.Series(Counter(chain(*df.colors)))
    
    print (df)
    

    Output:

    blue      2
    green     2
    brown     2
    red       1
    purple    1
    dtype: int64
    
    0 讨论(0)
  • 2021-01-19 22:04

    I would use .apply with pd.Series to accomplish this:

    # 1. Expand columns and count them
    df_temp = df["colors"].apply(pd.Series.value_counts)
    
        blue    brown   green   purple  red
    0   1.0 1.0 1.0 NaN NaN
    1   NaN NaN NaN NaN NaN
    2   1.0 NaN 1.0 NaN 1.0
    3   NaN NaN NaN 1.0 NaN
    4   NaN 1.0 NaN NaN NaN
    
    # 2. Get the value counts from this:
    df_temp.sum()
    
    blue      2.0
    brown     2.0
    green     2.0
    purple    1.0
    red       1.0
    
    # Alternatively, convert to a dict
    df_temp.sum().to_dict()
    # {'blue': 2.0, 'brown': 2.0, 'green': 2.0, 'purple': 1.0, 'red': 1.0}
    
    0 讨论(0)
  • 2021-01-19 22:18

    Use a Counter + chain, which is meant to do exactly this. Then construct the Series from the Counter object.

    import pandas as pd
    from collections import Counter
    from itertools import chain
    
    s = pd.Series([['blue','green','brown'], [], ['green','red','blue']])
    
    pd.Series(Counter(chain.from_iterable(s)))
    #blue     2
    #green    2
    #brown    1
    #red      1
    #dtype: int64
    

    While explode + value_counts are the pandas way to do things, they're slower for shorter lists.

    import perfplot
    import pandas as pd
    import numpy as np
    
    from collections import Counter
    from itertools import chain
    
    def counter(s):
        return pd.Series(Counter(chain.from_iterable(s)))
    
    def explode(s):
        return s.explode().value_counts()
    
    perfplot.show(
        setup=lambda n: pd.Series([['blue','green','brown'], [], ['green','red','blue']]*n), 
        kernels=[
            lambda s: counter(s),
            lambda s: explode(s),
        ],
        labels=['counter', 'explode'],
        n_range=[2 ** k for k in range(17)],
        equality_check=np.allclose,  
        xlabel='~len(s)'
    )
    

    0 讨论(0)
  • 2021-01-19 22:18

    A quick and dirty solution would be something like this I imagine.

    You'd still have to add a condition to get the empty list, though.

    colors = df.colors.tolist()
    d = {}
    for l in colors:
        for c in l:
            if c not in d.keys():
                d.update({c: 1})
            else:
                current_val = d.get(c)
                d.update({c: current_val+1})
    

    this produces a dictionary looking like this:

    {'blue': 2, 'green': 2, 'brown': 2, 'red': 1, 'purple': 1}
    
    0 讨论(0)
  • 2021-01-19 22:22

    Solution

    Best option: df.colors.explode().dropna().value_counts().

    However, if you also want to have counts for empty lists ([]), use Method-1.B/C similar to what was suggested by Quang Hoang in the comments.

    You can use any of the following two methods.

    • Method-1: Use pandas methods alone ⭐⭐⭐

      explode --> dropna --> value_counts

    • Method-2: Use list.extend --> pd.Series.value_counts
    ## Method-1
    # A. If you don't want counts for empty []
    df.colors.explode().dropna().value_counts() 
    
    # B. If you want counts for empty [] (classified as NaN)
    df.colors.explode().value_counts(dropna=False) # returns [] as Nan
    
    # C. If you want counts for empty [] (classified as [])
    df.colors.explode().fillna('[]').value_counts() # returns [] as []
    
    ## Method-2
    colors = []
    _ = [colors.extend(e) for e in df.colors if len(e)>0]
    pd.Series(colors).value_counts()
    

    Output:

    green     2
    blue      2
    brown     2
    red       1
    purple    1
    # NaN     1  ## For Method-1.B
    # []      1  ## For Method-1.C
    dtype: int64
    

    Dummy Data

    import pandas as pd
    
    df = pd.DataFrame({'colors':[['blue','green','brown'],
                                 [],
                                 ['green','red','blue'],
                                 ['purple'],
                                 ['brown']]})
    
    0 讨论(0)
提交回复
热议问题