Query for Matching Dates within Array

前端 未结 1 445
抹茶落季
抹茶落季 2021-01-19 16:25

I have created a model schema with some nested fields in it, one of it is the Timestamp field:

{_id: Object_id,
  name: string,
someArray: [{Timestamp: Date,         


        
相关标签:
1条回答
  • 2021-01-19 17:09

    You're missing the $elemMatch operator on the basic query and the $filter you attempted with the aggregation framework actually has incorrect syntax.

    So returning the document matching the dates being within that range in the array is:

    // Simulating the date values
    var start = new Date("2018-06-01"); // otherwise new Date(req.params.start)
    var end = new Date("2018-07-01");   // otherwise new Date(req.params.end)
    
    myColl.find({ 
      "_id": req.params.id,
      "someArray": {
        "$elemMatch": {  "$gte": start, "$lt": end  }
      }
    }).then( doc => {
      // do something with matched document
    }).catch(e => { console.err(e); res.send(e); })
    

    Filtering the actual array elements to be returned is:

    // Simulating the date values
    var start = new Date("2018-06-01");
    var end = new Date("2018-07-01");
    
    myColl.aggregate([
      { "$match": { 
        "_id": mongoose.Types.ObjectId(req.params.id),
        "someArray": {
          "$elemMatch": { "$gte": start, "$lt": end }
        }
      }},
      { "$project": {
        "name": 1,
        "someArray": {
          "$filter": {
            "input": "$someArray",
            "cond": {
              "$and": [
                { "$gte": [ "$$this.Timestamp", start ] }
                { "$lt": [ "$$this.Timestamp", end ] }
              ]
            }
          }
        }
      }}
    ]).then( docs => {
      /* remember aggregate returns an array always, so if you expect only one
       * then it's index 0
       *
       * But now the only items in 'someArray` are the matching ones, so you don't need 
       * the code you were writing to just pull out the matching ones
       */
       console.log(docs[0].someArray);
      
    }).catch(e => { console.err(e); res.send(e); })
    

    The things to be aware of are that in the aggregate() you need to actually "cast" the ObjectId value, because Mongoose "autocasting" does not work here. Normally mongoose reads from the schema to determine how to cast the data, but since aggregation pipelines "change things" then this does not happen.

    The $elemMatch is there because as the documentation says:

    When specifying conditions on more than one field nested in an array of documents, you can specify the query such that either a single document meets these condition or any combination of documents (including a single document) in the array meets the conditions.

    Use $elemMatch operator to specify multiple criteria on an array of embedded documents such that at least one embedded document satisfies all the specified criteria.

    In short $gte and $lt are an AND condition and count as "two", therefore the simple "dot notation" form does not apply. It's also $lt and not $lte, since it makes more sense to be "less than" the "next day" rather than looking for equality up to the "last millisecond".

    The $filter of course does exactly what it's name suggests and "filters" the actual array content so that only matching items are left behind.


    Demonstration

    Full demonstration listing creates two documents, one having only two array items which actually match the date range. The first query shows the correct document is matched with the range. The second shows the "filtering" of the array:

    const { Schema, Types: { ObjectId } } = mongoose = require('mongoose');
    
    const uri = 'mongodb://localhost/test';
    
    mongoose.Promise = global.Promise;
    mongoose.set('debug',true);
    
    const subSchema = new Schema({
      timestamp: Date,
      other: String
    });
    
    const testSchema = new Schema({
      name: String,
      someArray: [subSchema]
    });
    
    const Test = mongoose.model('Test', testSchema, 'filtertest');
    
    const log = data => console.log(JSON.stringify(data, undefined, 2));
    
    const startDate = new Date("2018-06-01");
    const endDate = new Date("2018-07-01");
    
    (function() {
    
      mongoose.connect(uri)
        .then(conn =>
          Promise.all(Object.entries(conn.models).map(([k,m]) => m.remove()))
        )
        .then(() =>
          Test.insertMany([
            {
              _id: "5b1522f5cdac0b6da18f7618",
              name: 'A',
              someArray: [
                { timestamp: new Date("2018-06-01"), other: "C" },
                { timestamp: new Date("2018-07-04"), other: "D" },
                { timestamp: new Date("2018-06-10"), other: "E" }
              ]
            },
            {
              _id: "5b1522f5cdac0b6da18f761c",
              name: 'B',
              someArray: [
                { timestamp: new Date("2018-07-04"), other: "D" },
              ]
            }
          ])
        )
        .then(() =>
          Test.find({
            "someArray": {
              "$elemMatch": {
                "timestamp": { "$gte": startDate, "$lt": endDate }
              }
            }
          }).then(docs => log({ docs }))
        )
        .then(() =>
          Test.aggregate([
            { "$match": {
              "_id": ObjectId("5b1522f5cdac0b6da18f7618"),
              "someArray": {
                "$elemMatch": {
                  "timestamp": { "$gte": startDate, "$lt": endDate }
                }
              }
            }},
            { "$addFields": {
              "someArray": {
                "$filter": {
                  "input": "$someArray",
                  "cond": {
                    "$and": [
                      { "$gte": [ "$$this.timestamp", startDate ] },
                      { "$lt": [ "$$this.timestamp", endDate ] }
                    ]
                  }
                }
              }
            }}
          ]).then( filtered => log({ filtered }))
        )
        .catch(e => console.error(e))
        .then(() => mongoose.disconnect());
    
    })()
    

    Or a bit more modern with async/await syntax:

    const { Schema, Types: { ObjectId } } = mongoose = require('mongoose');
    
    const uri = 'mongodb://localhost/test';
    
    mongoose.Promise = global.Promise;
    mongoose.set('debug',true);
    
    const subSchema = new Schema({
      timestamp: Date,
      other: String
    });
    
    const testSchema = new Schema({
      name: String,
      someArray: [subSchema]
    });
    
    const Test = mongoose.model('Test', testSchema, 'filtertest');
    
    const log = data => console.log(JSON.stringify(data, undefined, 2));
    
    (async function() {
    
      try {
    
        const startDate = new Date("2018-06-01");
        const endDate = new Date("2018-07-01");
    
        const conn = await mongoose.connect(uri);
    
        // Clean collections
        await Promise.all(Object.entries(conn.models).map(([k,m]) => m.remove()));
    
        // Create test items
    
        await Test.insertMany([
          {
            _id: "5b1522f5cdac0b6da18f7618",
            name: 'A',
            someArray: [
              { timestamp: new Date("2018-06-01"), other: "C" },
              { timestamp: new Date("2018-07-04"), other: "D" },
              { timestamp: new Date("2018-06-10"), other: "E" }
            ]
          },
          {
            _id: "5b1522f5cdac0b6da18f761c",
            name: 'B',
            someArray: [
              { timestamp: new Date("2018-07-04"), other: "D" },
            ]
          }
        ]);
    
    
    
        // Select matching 'documents'
        let docs = await Test.find({
          "someArray": {
            "$elemMatch": {
              "timestamp": { "$gte": startDate, "$lt": endDate }
            }
          }
        });
        log({ docs });
    
        let filtered = await Test.aggregate([
          { "$match": {
            "_id": ObjectId("5b1522f5cdac0b6da18f7618"),
            "someArray": {
              "$elemMatch": {
                "timestamp": { "$gte": startDate, "$lt": endDate }
              }
            }
          }},
          { "$addFields": {
            "someArray": {
              "$filter": {
                "input": "$someArray",
                "cond": {
                  "$and": [
                    { "$gte": [ "$$this.timestamp", startDate ] },
                    { "$lt": [ "$$this.timestamp", endDate ] }
                  ]
                }
              }
            }
          }}
        ]);
        log({ filtered });
    
        mongoose.disconnect();
    
      } catch(e) {
        console.error(e)
      } finally {
        process.exit()
      }
    
    })()
    

    Both are the same and give the same output:

    Mongoose: filtertest.remove({}, {})
    Mongoose: filtertest.insertMany([ { _id: 5b1522f5cdac0b6da18f7618, name: 'A', someArray: [ { _id: 5b1526952794447083ababf6, timestamp: 2018-06-01T00:00:00.000Z, other: 'C' }, { _id: 5b1526952794447083ababf5, timestamp: 2018-07-04T00:00:00.000Z, other: 'D' }, { _id: 5b1526952794447083ababf4, timestamp: 2018-06-10T00:00:00.000Z, other: 'E' } ], __v: 0 }, { _id: 5b1522f5cdac0b6da18f761c, name: 'B', someArray: [ { _id: 5b1526952794447083ababf8, timestamp: 2018-07-04T00:00:00.000Z, other: 'D' } ], __v: 0 } ], {})
    Mongoose: filtertest.find({ someArray: { '$elemMatch': { timestamp: { '$gte': new Date("Fri, 01 Jun 2018 00:00:00 GMT"), '$lt': new Date("Sun, 01 Jul 2018 00:00:00 GMT") } } } }, { fields: {} })
    {
      "docs": [
        {
          "_id": "5b1522f5cdac0b6da18f7618",
          "name": "A",
          "someArray": [
            {
              "_id": "5b1526952794447083ababf6",
              "timestamp": "2018-06-01T00:00:00.000Z",
              "other": "C"
            },
            {
              "_id": "5b1526952794447083ababf5",
              "timestamp": "2018-07-04T00:00:00.000Z",
              "other": "D"
            },
            {
              "_id": "5b1526952794447083ababf4",
              "timestamp": "2018-06-10T00:00:00.000Z",
              "other": "E"
            }
          ],
          "__v": 0
        }
      ]
    }
    Mongoose: filtertest.aggregate([ { '$match': { _id: 5b1522f5cdac0b6da18f7618, someArray: { '$elemMatch': { timestamp: { '$gte': 2018-06-01T00:00:00.000Z, '$lt': 2018-07-01T00:00:00.000Z } } } } }, { '$addFields': { someArray: { '$filter': { input: '$someArray', cond: { '$and': [ { '$gte': [ '$$this.timestamp', 2018-06-01T00:00:00.000Z ] }, { '$lt': [ '$$this.timestamp', 2018-07-01T00:00:00.000Z ] } ] } } } } } ], {})
    {
      "filtered": [
        {
          "_id": "5b1522f5cdac0b6da18f7618",
          "name": "A",
          "someArray": [
            {
              "_id": "5b1526952794447083ababf6",
              "timestamp": "2018-06-01T00:00:00.000Z",
              "other": "C"
            },
            {
              "_id": "5b1526952794447083ababf4",
              "timestamp": "2018-06-10T00:00:00.000Z",
              "other": "E"
            }
          ],
          "__v": 0
        }
      ]
    }
    
    0 讨论(0)
提交回复
热议问题