Let\'s say I have a class of 30 students and want generate every possible way in which they can be partitioned into groups of 5 (order is irrelevant).
I know how to
One possibility would be to find all combinations to form an individual group, then go through and generate combinations that don't contain members of that individual group. Something like:
List<List<Student>> combinations=Combinations(students);
public void GenerateCombinations(int startingIndex, List<List<Student>> currentGroups, int groupsLeft)
{
if(groupsLeft==0) ProcessCombination(currentGroups);
for(int i=startingIndex; i<combinations.Count; i++)
{
if combinations[i] does not contain a student in current groups
GenerateCombinations(i+1, currentGroups + combinations[i], groupsLeft -1);
}
}
It won't be the most efficient method to go about it, but it should generate all combinations of groups. I suspect better performance could be had if you were to generate temporary lists of combinations, where in all groups that can't occur were removed, but that would be a bit more complex.
As a slight aside, there should be 142,506 combinations of 30 students to form a single group of 5. My <sarcasm> awesome </sarcasm> math skills suggest that there should be about 10^17 = 100 quadrillion combinations of groups of students (30!/((5!^6)*6!); 30! orderings of students, ordering of 6 groups of 5 does not matter, and ordering of those 6 groups doesn't matter). You might be sitting there a while waiting for this to finish.
Well, there's (30C5*25C5*20C5*15C5*10C5*5C5)/6! = 30!/(6!*5!6) = 123,378,675,083,039,376 different partitons of 30 into groups of 5, so generating them all will take some time, no matter what method you use.
In general, though, a good method to selecting such a partition is to use some ordering on the elements, and find the grouping for the highest ungrouped element, and then group the rest.
find_partition = lambda do |elts|
if elts.empty?
[[]]
else
highest = elts.pop
elts.combination(4).map do |others|
find_partition[elts - others].map { |part| part << [highest,*others] }
end.inject(:+)
end
end
find_partition[(1..30).to_a]
This way you're only generating each partition once
This is an old question, but anyway, for the record, that's how I would it in Ruby:
class Array
def groups_of_size(n)
Enumerator.new do |yielder|
if self.empty?
yielder.yield([])
else
self.drop(1).combination(n-1).map { |vs| [self.first] + vs }.each do |values|
(self - values).groups_of_size(n).each do |group|
yielder.yield([values] + group)
end
end
end
end
end
end
I use an enumerator because the output can grow very quickly, a strict output (an array for example) wouldn't be useful. A usage example:
>> pp [0, 1, 2, 3, 4, 5].groups_of_size(3).to_a
=>
[[[0, 1, 2], [3, 4, 5]],
[[0, 1, 3], [2, 4, 5]],
[[0, 1, 4], [2, 3, 5]],
[[0, 1, 5], [2, 3, 4]],
[[0, 2, 3], [1, 4, 5]],
[[0, 2, 4], [1, 3, 5]],
[[0, 2, 5], [1, 3, 4]],
[[0, 3, 4], [1, 2, 5]],
[[0, 3, 5], [1, 2, 4]],
[[0, 4, 5], [1, 2, 3]]]
You could do some post-processing on the permutations. Some pseudo-code (implement in the language of your choice...):
// We have a list of lists called 'permutations'
// combinations is an (empty) list of lists
for each permutation in permutations
{
sortedPermutation = permutation.sort()
if (! combinations.find(sortedPermutation) )
{
combinations.add(sortedPermutation);
}
}
Probably not the most efficient; I'd add the sort & compare to the code that generates the permutations personally.