Algorithm to shuffle an Array randomly based on different weights

后端 未结 6 732
天涯浪人
天涯浪人 2021-01-19 14:19

I have a collection of elements that I want to shuffle randomly, but every element has a different priority or weight. So the element with bigger weight has to have more pro

相关标签:
6条回答
  • 2021-01-19 14:30

    Based on the @amit suggestion:

    def self.random_suffle_with_weight(elements, &proc)
      consecutive_chain = []
      elements.each do |element|
        proc.call(element).times { consecutive_chain << element }
      end
    
      consecutive_chain.shuffle.uniq
    end
    
    0 讨论(0)
  • 2021-01-19 14:46

    I can think of two approaches to solve it, though my gut tells me there should be modification for Fisher-Yates to achieve it even better:

    O(n*W) solution: (simple to program)

    First approach, create duplicates according to the weight (same as your approach), and populate a new list. Now run a standard shuffle (fisher-yates) on this list. Iterate the list and discard all duplicates, and keep only the first occurance of each element. This runs in O(n*W), where n is the number of elements in the list, and W is the average weight (pseudo-polynomial solution).


    O(nlogn) solution: (significantly harder to program)

    Second approach would be to create a list of sum of weights of the elements:

    sum[i] = weight[0] + ... + weight[i]
    

    Now, draw a number, between 0 to sum[n], and chose the first element whose sum is greater/equals this random number.
    This will be the next element, discard the element, recreate the list, and repeat.

    This runs in O(n^2*logn)

    It can be further enhanced by creating a binary tree rather than a list, where each node also stores the value of weights of the entire subtree.
    Now, after choosing an element, find the matching element (whose sum up to him is the first one higher than the random selected number), delete the node, and recalculate the weights on the path to the route.
    This will take O(n) to create the tree, O(logn) to find the node at each step, and O(logn) to recalculate the sum. Repeat it until the tree is exhausted, and you get O(nlogn) solution.
    The idea of this approach is very similar to Order Statistics Trees, but using the sum of weights rather than the number of descendants. The search and balancing after deletion will be done simiarly to order statistics tree.


    Explanation to constructing and using the binary tree.

    Assume you have elements=[a,b,c,d,e,f,g,h,i,j,k,l,m] with weights=[1,2,3,1,2,3,1,2,3,1,2,3,1]

    First construct an almost full binary tree, and populate the elements in it. Note that the tree is NOT Binary search tree, just a regular tree, so order of elements does not matter - and we won't need to maintain it later on.

    You will get something like the following tree:

    enter image description here

    Legend: w - weight of that node, sw - sum of weight for the entire subtree.

    Next, calculate sum of weights for each subtree. Start from the leaves, and calculate s.w = w. For every other node calculate s.w = left->s.w + right->s.w, filling the tree from the bottom up (post order traversal).

    enter image description here

    Building the tree, populating it, and calculating s.w. for each node is done in O(n).

    Now, you iteratively need to chose a random number between 0 to sum of weights (the s.w. value of the root, in our case 25). Let that number be r, and find for each such number the matching node.
    Finding the matching node is done recursively

    if `r< root.left.sw`:
       go to left son, and repeat. 
    else if `r<root.left.sw + root.w`:
       the node you are seeking is the root, choose it. 
    else:
       go to `root.right` with `r= r-root.left.sw - root.w`
    

    Example, chosing r=10:

    Is r<root.left.sw? Yes. Recursively invoke with r=10,root=B (left child)
    Is r<root.left.sw No. Is r < root.left.sw + root.w? No. Recursively invoke with r=10-6-2=2, and root=E (right chile)
    Is r<root.left.sw? No. Is r < root.left.sw + root.w? Yes. Choose E as next node.
    

    This is done in O(h) = O(logn) per iteration.

    Now, you need to delete that node, and reset the weights of the tree.
    One approach to deleting that ensures the tree is in logarithmic weight is smilar to binary heap: Replace the chosen node with the bottom rightest node, remove the new rightest bottom node, and rebalance the two branches going from the two involved nodes to the tree.

    First switch:

    enter image description here

    Then recalculate:

    enter image description here

    Note that recalculation is needed only to two paths, each of depth at most O(logn) (the nodes colored orange in the pic), so deletion and recalculation is also O(logn).

    Now, you got yourself a new binary tree, with the modified weights, and you are ready to choose the next candidate, until the tree is exhausted.

    0 讨论(0)
  • 2021-01-19 14:49

    I would shuffle the array as follows:

    Code

    def weighted_shuffle(array)
      arr = array.sort_by { |h| -h[:weight] }
      tot_wt = arr.reduce(0) { |t,h| t += h[:weight] }
      ndx_left = arr.each_index.to_a
      arr.size.times.with_object([]) do |_,a|
        cum = 0
        rn = (tot_wt>0) ? rand(tot_wt) : 0
        ndx = ndx_left.find { |i| rn <= (cum += arr[i][:weight]) }
        a << arr[ndx]
        tot_wt -= arr[ndx_left.delete(ndx)][:weight]
      end
    end
    

    Examples

    elements = [
      { :id => "ID_1", :weight => 100 },
      { :id => "ID_2", :weight => 200 },
      { :id => "ID_3", :weight => 600 }
    ]
    
    def display(arr,n)
      n.times.with_object([]) { |_,a|
        p weighted_shuffle(arr).map { |h| h[:id] } }
    end
    
    display(elements,10)
      ["ID_3", "ID_2", "ID_1"]
      ["ID_1", "ID_3", "ID_2"]
      ["ID_1", "ID_3", "ID_2"]
      ["ID_3", "ID_2", "ID_1"]
      ["ID_3", "ID_2", "ID_1"]
      ["ID_2", "ID_3", "ID_1"]
      ["ID_2", "ID_3", "ID_1"]
      ["ID_3", "ID_1", "ID_2"]
      ["ID_3", "ID_1", "ID_2"]
      ["ID_3", "ID_2", "ID_1"]
    
    n = 10_000
    pos = elements.each_index.with_object({}) { |i,pos| pos[i] = Hash.new(0) }
    n.times { weighted_shuffle(elements).each_with_index { |h,i|
      pos[i][h[:id]] += 1 } }
    pos.each { |_,h| h.each_key { |k| h[k] = (h[k]/n.to_f).round(3) } }
      #=> {0=>{"ID_3"=>0.661, "ID_2"=>0.224, "ID_1"=>0.115},
      #    1=>{"ID_2"=>0.472, "ID_3"=>0.278, "ID_1"=>0.251},
      #    2=>{"ID_1"=>0.635, "ID_2"=>0.304, "ID_3"=>0.061}}
    

    This says that, of the 10,000 times weighted_shuffle was called, the first element selected was `"ID_3" 66.1% of the time, "ID_2" 22.4% percent of the time and "ID_1" the remaining 11.5% of the time. "ID_2" was selected second 47.2% of the times, and so on.

    Explanation

    arr is the array of hashes to be shuffled. The shuffle is performed in arr.size steps. At each step I randomly draw an element of arr, without replacement, using the weights provided. If h[:weight] sums to tot for all elements h of arr that have not been previously selected, the probability of any one of those hashes h being selected is h[:weight]/tot. The selection at each step is done by finding the first cumulative probability p for which rand(tot) <= p. This last step is made more efficient by pre-sorting element's elements by declining weight, which is done in the first step of the method:

    elements.sort_by { |h| -h[:weight] }
      #=> [{ :id => "ID_3", :weight => 600 },
      #    { :id => "ID_2", :weight => 200 },
      #    { :id => "ID_1", :weight => 100 }]
    

    This is implemented using an array of indices of arr, called ndx_left, over which the iteration is performed. After a hash h at index i is selected, tot is updated by subtracting h[:weight] and i is deleted from ndx_left.

    Variant

    The following is a variant of the method above:

    def weighted_shuffle_variant(array)
       arr = array.sort_by { |h| -h[:weight] }
       tot_wt = arr.reduce(0) { |t,h| t += h[:weight] }
       n = arr.size
       n.times.with_object([]) do |_,a|
         cum = 0
         rn = (tot_wt>0) ? rand(tot_wt) : 0
         h, ndx = arr.each_with_index.find { |h,_| rn <= (cum += h[:weight]) }
         a << h
         tot_wt -= h[:weight]
         arr[ndx] = arr.pop
       end
     end
    

    Rather than maintaining an array of indices of elements in arr which have not yet been selected, arr is modified in place and reduced in size by one when each element is selected. If the element arr[i] is selected, the last element is copied to offset i and the last element of arr is removed:

    arr[i] = arr.pop 
    

    Benchmark

    The approach of replicating each element h of elements h[:weight] times, shuffling then uniqifying the result is excruciatingly inefficient. If that's not obvious, here's a benchmark. I've compared my weighted_shuffle with @Mori's solution which is representative of the "replicate, shuffle, delete" approach:

    def mori_shuffle(array)
      array.flat_map { |h| [h[:id]] * h[:weight] }.shuffle.uniq
    end
    
    require 'benchmark'
    
    def test_em(nelements, ndigits)
      puts "\nelements.size=>#{nelements}, weights have #{ndigits} digits\n\n"
      mx = 10**ndigits
      elements = nelements.times.map { |i| { id: i, weight: rand(mx) } }
      Benchmark.bm(15 "mori_shuffle", "weighted_shuffle") do |x|
        x.report { mori_shuffle(elements) }
        x.report { weighted_shuffle(elements) }
      end
    end
    

    elements.size=>3, weights have 1 digits
    
                          user     system      total        real
    mori_shuffle      0.000000   0.000000   0.000000 (  0.000068)
    weighted_shuffle  0.000000   0.000000   0.000000 (  0.000051)
    
    elements.size=>3, weights have 2 digits
    
                          user     system      total        real
    mori_shuffle      0.000000   0.000000   0.000000 (  0.000035)
    weighted_shuffle  0.010000   0.000000   0.010000 (  0.000026)
    
    elements.size=>3, weights have 3 digits
    
                          user     system      total        real
    mori_shuffle      0.000000   0.000000   0.000000 (  0.000161)
    weighted_shuffle  0.000000   0.000000   0.000000 (  0.000027)
    
    elements.size=>3, weights have 4 digits
    
                          user     system      total        real
    mori_shuffle      0.000000   0.000000   0.000000 (  0.000854)
    weighted_shuffle  0.000000   0.000000   0.000000 (  0.000026)
    

    elements.size=>20, weights have 2 digits
    
                          user     system      total        real
    mori_shuffle      0.000000   0.000000   0.000000 (  0.000089)
    weighted_shuffle  0.000000   0.000000   0.000000 (  0.000090)
    
    elements.size=>20, weights have 3 digits
    
                          user     system      total        real
    mori_shuffle      0.000000   0.000000   0.000000 (  0.000771)
    weighted_shuffle  0.000000   0.000000   0.000000 (  0.000071)
    
    elements.size=>20, weights have 4 digits
    
                          user     system      total        real
    mori_shuffle      0.000000   0.000000   0.000000 (  0.005895)
    weighted_shuffle  0.000000   0.000000   0.000000 (  0.000073)
    

    elements.size=>100, weights have 2 digits
    
                          user     system      total        real
    mori_shuffle      0.000000   0.000000   0.000000 (  0.000446)
    weighted_shuffle  0.000000   0.000000   0.000000 (  0.000683)
    
    elements.size=>100, weights have 3 digits
    
                          user     system      total        real
    mori_shuffle      0.010000   0.000000   0.010000 (  0.003765)
    weighted_shuffle  0.000000   0.000000   0.000000 (  0.000659)
    
    elements.size=>100, weights have 4 digits
    
                          user     system      total        real
    mori_shuffle      0.030000   0.010000   0.040000 (  0.034982)
    weighted_shuffle  0.000000   0.000000   0.000000 (  0.000638)
    
    elements.size=>100, weights have 5 digits
    
                          user     system      total        real
    mori_shuffle      0.550000   0.040000   0.590000 (  0.593190)
    weighted_shuffle  0.000000   0.000000   0.000000 (  0.000623)
    
    elements.size=>100, weights have 6 digits
    
                          user     system      total        real
    mori_shuffle      5.560000   0.380000   5.940000 (  5.944749)
    weighted_shuffle  0.010000   0.000000   0.010000 (  0.000636)
    

    Comparison of weighted_shuffle and weighted_shuffle_variant

    Considering that the benchmark engine is all warmed up, I may as well compare the two methods I suggested. The results are similar, with weighted_shuffle having a consistent edge. Here are some typical results:

    elements.size=>20, weights have 3 digits
    
                                   user     system      total        real
    weighted_shuffle           0.000000   0.000000   0.000000 (  0.000062)
    weighted_shuffle_variant   0.000000   0.000000   0.000000 (  0.000108)
    
    elements.size=>20, weights have 4 digits
    
                                   user     system      total        real
    weighted_shuffle           0.000000   0.000000   0.000000 (  0.000060)
    weighted_shuffle_variant   0.000000   0.000000   0.000000 (  0.000089)
    
    elements.size=>100, weights have 2 digits
    
                                   user     system      total        real
    weighted_shuffle           0.000000   0.000000   0.000000 (  0.000666)
    weighted_shuffle_variant   0.000000   0.000000   0.000000 (  0.000871)
    
    elements.size=>100, weights have 4 digits
    
                                   user     system      total        real
    weighted_shuffle           0.000000   0.000000   0.000000 (  0.000625)
    weighted_shuffle_variant   0.000000   0.000000   0.000000 (  0.000803)
    
    elements.size=>100, weights have 6 digits
    
                                   user     system      total        real
    weighted_shuffle           0.000000   0.000000   0.000000 (  0.000664)
    weighted_shuffle_variant   0.000000   0.000000   0.000000 (  0.000773)
    

    As compared to weighted_shuffle, weighted_shuffle_variant does not maintain an array of indices of elements of (a copy of) elements that have not yet been selected (a time-saver). Instead, it replaces the selected element in the array with the last element of the array and then pops the last element, causing the size of the array to decrease by one at each step. Unfortunately, that destroys the ordering of elements by decreasing weight. By contrast, weighted_shuffle maintains the optimization of considering elements by decreasing order of weight. On balance, the latter tradeoff appears to be more important than the former.

    0 讨论(0)
  • 2021-01-19 14:49

    I have my solution but I think it can be improved:

    module Utils
      def self.random_suffle_with_weight(elements, &proc)
        # Create a consecutive chain of element
        # on which every element is represented
        # as many times as its weight.
        consecutive_chain = []
        elements.each do |element|
          proc.call(element).times { consecutive_chain << element }
        end
    
        # Choosine one element randomly from
        # the consecutive_chain and remove it for the next round
        # until all elements has been chosen.
        shorted_elements = []
        while(shorted_elements.length < elements.length)
          random_index = Kernel.rand(consecutive_chain.length)
          selected_element = consecutive_chain[random_index]
          shorted_elements << selected_element
          consecutive_chain.delete(selected_element)
        end
    
        shorted_elements
      end
    end
    

    Test:

    def test_random_suffle_with_weight
      element_1 = { :id => "ID_1", :weight => 10 }
      element_2 = { :id => "ID_2", :weight => 20 }
      element_3 = { :id => "ID_3", :weight => 60 }
      elements = [element_1, element_2, element_3]
    
      Kernel.expects(:rand).with(90).returns(11)
      Kernel.expects(:rand).with(70).returns(1)
      Kernel.expects(:rand).with(60).returns(50)
    
      assert_equal([element_2, element_1, element_3], Utils.random_suffle_with_weight(elements) { |e| e[:weight] })
    end
    
    0 讨论(0)
  • 2021-01-19 14:51

    Weighted Random Sampling (2005; Efraimidis, Spirakis) provides a very elegant algorithm for this. The implementation is super simple and runs in O(n log(n)):

    def weigthed_shuffle(items, weights):
        order = sorted(range(len(items)), key=lambda i: -random.random() ** (1.0 / weights[i]))
        return [items[i] for i in order]
    
    0 讨论(0)
  • 2021-01-19 14:53
    elements.flat_map { |h| [h[:id]] * h[:weight] }.shuffle.uniq
    
    0 讨论(0)
提交回复
热议问题