I have a CSV which looks like this:
Date,Open,High,Low,Close,Adj Close,Volume
2007-07-25,4.929000,4.946000,4.896000,4.904000,4.904000,0
2007-07-26,4.863000,4
The read_csv dtype option doesn't work ?
from the documentation dtype : Type name or dict of column -> type, default None Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32} Use str or object to preserve and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion.
data = pd.read_csv(file,
index_col='Date',
usecols=['High','Low'],
dtype={'High': np.float64, 'Low': np.float64})
I think you need to_numeric with errors='coerce'
because it seems there are some bad data:
data = pd.read_csv(file, index_col='Date', usecols=['High','Low'])
data = data.apply(pd.to_numeric, errors='coerce')