Aggregate a Dask dataframe and produce a dataframe of aggregates

后端 未结 2 1972
无人共我
无人共我 2021-01-19 12:36

I have a Dask dataframe that looks like this:

url     referrer    session_id ts                  customer
url1    ref1        xxx        2017-09-15 00:00:00          


        
相关标签:
2条回答
  • 2021-01-19 13:19

    The following does indeed work:

    gb = df.groupby(['customer', 'url', 'ts'])
    gb.apply(lambda d: pd.DataFrame({'views': len(d), 
         'visitiors': d.session_id.count(), 
         'referrers': [d.referer.tolist()]})).reset_index()
    

    (assuming visitors should be unique as per the sql above) You may wish to define the meta of the output.

    0 讨论(0)
  • 2021-01-19 13:25

    This is the link to the github issue that @j-bennet opened that gives an additional option. Based on the issue we implemented the aggregation as follows:
    custom_agg = dd.Aggregation( 'custom_agg', lambda s: s.apply(set), lambda s: s.apply(lambda chunks: list(set(itertools.chain.from_iterable(chunks)))), ).
    In order to combine with the count the code is as follows
    dfgp = df.groupby(['ID1','ID2']) df2 = dfgp.assign(cnt=dfgp.size()).agg(custom_agg).reset_index()

    0 讨论(0)
提交回复
热议问题