How to split dataset to two datasets with unique and duplicate rows each?

前端 未结 2 1322
你的背包
你的背包 2021-01-19 08:17

I want to take duplicate records in a Spark scala Dataframe. for example, I want to take duplicate values based on 3 columns like \"id\", \"name\", \"age\".condition part co

相关标签:
2条回答
  • 2021-01-19 08:28

    You need to give comma separated col names.

    col1 ..col2 should be of string type.
         val window= Window.partitionBy(col1,col2,..)
    
    
        findDuplicateRecordsDF.withColumn("count", count("*")
              .over(window)
              .where($"count">1)
              .show()
    
    0 讨论(0)
  • 2021-01-19 08:32

    You can use window functions. Check this out

    scala> val df = Seq((3,"sam",23,"9876543210","sam@yahoo.com"),(7,"ram",27,"8765432190","ram@gmail.com"),(3,"sam",28,"9876543210","sam@yahoo.com"),(6,"haris",30,"6543210777","haris@gmail.com"),(9,"ram",27,"8765432130","ram94@gmail.com"),(6,"haris",24,"6543210777","haris@gmail.com"),(4,"karthi",26,"4321066666","karthi@gmail.com")).toDF("id","name","age","phone","email_id")
    df: org.apache.spark.sql.DataFrame = [id: int, name: string ... 3 more fields]
    
    scala> val dup_cols = List("id","name","phone","email_id");
    dup_cols: List[String] = List(id, name, phone, email_id)
    
    scala> df.createOrReplaceTempView("contact")
    
    scala> val dup_cols_qry = dup_cols.mkString(" count(*) over(partition by ", "," , " ) as cnt ")
    dup_cols_qry: String = " count(*) over(partition by id,name,phone,email_id ) as cnt "
    
    scala> val df2 = spark.sql("select *,"+ dup_cols_qry + " from contact ")
    df2: org.apache.spark.sql.DataFrame = [id: int, name: string ... 4 more fields]
    
    scala> df2.show(false)
    +---+------+---+----------+----------------+---+
    |id |name  |age|phone     |email_id        |cnt|
    +---+------+---+----------+----------------+---+
    |4  |karthi|26 |4321066666|karthi@gmail.com|1  |
    |7  |ram   |27 |8765432190|ram@gmail.com   |1  |
    |9  |ram   |27 |8765432130|ram94@gmail.com |1  |
    |3  |sam   |23 |9876543210|sam@yahoo.com   |2  |
    |3  |sam   |28 |9876543210|sam@yahoo.com   |2  |
    |6  |haris |30 |6543210777|haris@gmail.com |2  |
    |6  |haris |24 |6543210777|haris@gmail.com |2  |
    +---+------+---+----------+----------------+---+
    
    
    scala> df2.createOrReplaceTempView("contact2")
    

    //Duplicates

    scala>  spark.sql("select " + dup_cols.mkString(",") + " from contact2 where cnt = 2").show
    +---+-----+----------+---------------+
    | id| name|     phone|       email_id|
    +---+-----+----------+---------------+
    |  3|  sam|9876543210|  sam@yahoo.com|
    |  3|  sam|9876543210|  sam@yahoo.com|
    |  6|haris|6543210777|haris@gmail.com|
    |  6|haris|6543210777|haris@gmail.com|
    +---+-----+----------+---------------+
    

    // Unique

    scala>  spark.sql("select " + dup_cols.mkString(",") + " from contact2 where cnt = 1").show
    +---+------+----------+----------------+
    | id|  name|     phone|        email_id|
    +---+------+----------+----------------+
    |  4|karthi|4321066666|karthi@gmail.com|
    |  7|   ram|8765432190|   ram@gmail.com|
    |  9|   ram|8765432130| ram94@gmail.com|
    +---+------+----------+----------------+
    

    EDIT2:

    val df = Seq(
      (4,"karthi",26,"4321066666","karthi@gmail.com"),
      (6,"haris",24,"6543210777","haris@gmail.com"),
      (7,"ram",27,"8765432190","ram@gmail.com"),
      (9,"ram",27,"8765432190","ram@gmail.com"),
      (6,"haris",24,"6543210777","haris@gmail.com"),
      (3,"sam",23,"9876543210","sam@yahoo.com"),
      (3,"sam",23,"9876543210","sam@yahoo.com"),
      (3,"sam",28,"9876543210","sam@yahoo.com"),
      (6,"haris",30,"6543210777","haris@gmail.com")
      ).toDF("id","name","age","phone","email_id")
    
    val dup_cols = List("name","phone","email_id")
    val dup_cols_str = dup_cols.mkString(",")
    df.createOrReplaceTempView("contact")
    val dup_cols_count_qry = " count(*) over(partition by " + dup_cols_str + " ) as cnt "
    val dup_cols_row_num_qry = " row_number() over(partition by " + dup_cols_str + " order by " + dup_cols_str + " ) as rwn "
    val df2 = spark.sql("select *,"+ dup_cols_count_qry + "," + dup_cols_row_num_qry + " from contact ")
    df2.show(false)
    df2.createOrReplaceTempView("contact2")
    spark.sql("select id, " + dup_cols_str + " from contact2 where cnt > 1 and rwn > 1").show
    

    Results:

    +---+-----+----------+---------------+
    | id| name|     phone|       email_id|
    +---+-----+----------+---------------+
    |  6|haris|6543210777|haris@gmail.com|
    |  6|haris|6543210777|haris@gmail.com|
    |  3|  sam|9876543210|  sam@yahoo.com|
    |  3|  sam|9876543210|  sam@yahoo.com|
    |  9|  ram|8765432190|  ram@gmail.com|
    +---+-----+----------+---------------+
    

    EDIT3: - Null condition check

    val df = Seq(
      (4,"karthi",26,"4321066666","karthi@gmail.com"),
      (6,"haris",30,"6543210777","haris@gmail.com"),
      (6,"haris",30,null,"haris@gmail.com"),
      (7,"ram",27,"8765432190","ram@gmail.com"),
      (9,"ram",27,"8765432190","ram@gmail.com"),
      (6,"haris",24,"6543210777","haris@gmail.com"),
      (6,null,24,"6543210777",null),
      (3,"sam",23,"9876543210","sam@yahoo.com"),
      (3,"sam",23,"9876543210","sam@yahoo.com"),
      (3,"sam",28,"9876543210","sam@yahoo.com"),
      (6,"haris",24,"6543210777","haris@gmail.com")
    ).toDF("id","name","age","phone","email_id")
    
    val all_cols = df.columns
    val dup_cols = List("name","phone","email_id")
    val rem_cols = all_cols.diff(dup_cols)
    val dup_cols_str = dup_cols.mkString(",")
    val rem_cols_str = rem_cols.mkString(",")
    val dup_cols_length = dup_cols.length
    val df_null_col = dup_cols.map( x => when(col(x).isNull,0).otherwise(1)).reduce( _ + _ )
    val df_null = df.withColumn("null_count", df_null_col)
    df_null.createOrReplaceTempView("contact")
    df_null.show(false)
    
    val dup_cols_count_qry = " count(*) over(partition by " + dup_cols_str + " ) as cnt "
    val dup_cols_row_num_qry = " row_number() over(partition by " + dup_cols_str + " order by " + dup_cols_str + " ) as rwn "
    val df2 = spark.sql("select *,"+ dup_cols_count_qry + "," + dup_cols_row_num_qry + " from contact " + " where null_count  = " + dup_cols_length )
    df2.show(false)
    df2.createOrReplaceTempView("contact2")
    val df3 = spark.sql("select " +  dup_cols_str +  ", " + rem_cols_str + " from contact2 where cnt > 1 and rwn > 1")
    df3.show(false)
    

    Results:

    +---+------+---+----------+----------------+----------+
    |id |name  |age|phone     |email_id        |null_count|
    +---+------+---+----------+----------------+----------+
    |4  |karthi|26 |4321066666|karthi@gmail.com|3         |
    |6  |haris |30 |6543210777|haris@gmail.com |3         |
    |6  |haris |30 |null      |haris@gmail.com |2         |
    |7  |ram   |27 |8765432190|ram@gmail.com   |3         |
    |9  |ram   |27 |8765432190|ram@gmail.com   |3         |
    |6  |haris |24 |6543210777|haris@gmail.com |3         |
    |6  |null  |24 |6543210777|null            |1         |
    |3  |sam   |23 |9876543210|sam@yahoo.com   |3         |
    |3  |sam   |23 |9876543210|sam@yahoo.com   |3         |
    |3  |sam   |28 |9876543210|sam@yahoo.com   |3         |
    |6  |haris |24 |6543210777|haris@gmail.com |3         |
    +---+------+---+----------+----------------+----------+
    
    
    |id |name  |age|phone     |email_id        |null_count|cnt|rwn|
    +---+------+---+----------+----------------+----------+---+---+
    |6  |haris |30 |6543210777|haris@gmail.com |3         |3  |1  |
    |6  |haris |24 |6543210777|haris@gmail.com |3         |3  |2  |
    |6  |haris |24 |6543210777|haris@gmail.com |3         |3  |3  |
    |3  |sam   |23 |9876543210|sam@yahoo.com   |3         |3  |1  |
    |3  |sam   |23 |9876543210|sam@yahoo.com   |3         |3  |2  |
    |3  |sam   |28 |9876543210|sam@yahoo.com   |3         |3  |3  |
    |7  |ram   |27 |8765432190|ram@gmail.com   |3         |2  |1  |
    |9  |ram   |27 |8765432190|ram@gmail.com   |3         |2  |2  |
    |4  |karthi|26 |4321066666|karthi@gmail.com|3         |1  |1  |
    +---+------+---+----------+----------------+----------+---+---+
    
    +-----+----------+---------------+---+---+
    |name |phone     |email_id       |id |age|
    +-----+----------+---------------+---+---+
    |haris|6543210777|haris@gmail.com|6  |24 |
    |haris|6543210777|haris@gmail.com|6  |24 |
    |sam  |9876543210|sam@yahoo.com  |3  |23 |
    |sam  |9876543210|sam@yahoo.com  |3  |28 |
    |ram  |8765432190|ram@gmail.com  |9  |27 |
    +-----+----------+---------------+---+---+
    

    blank check

    val df_null_col = dup_cols.map( x => when(col(x).isNull or regexp_replace(col(x), """^\s*$""","")=== lit(""),0).otherwise(1)).reduce( _ + _ )
    

    Filter only when all 3 columns are either blank or null

    val df = Seq(
      (4,"karthi",26,"4321066666","karthi@gmail.com"),
      (6,"haris",30,"6543210777","haris@gmail.com"),
      (6,null,30,null,null),
      (7,"ram",27,"8765432190","ram@gmail.com"),
      (9,"",27,"",""),
      (7,"ram",27,"8765432190","ram@gmail.com"),
      (6,"haris",24,"6543210777","haris@gmail.com"),
      (6,null,24,"6543210777",null),
      (3,"sam",23,"9876543210","sam@yahoo.com"),
      (3,null,23,"9876543210","sam@yahoo.com"),
      (3,null,28,"9876543213",null),
      (6,"haris",24,null,"haris@gmail.com")
    ).toDF("id","name","age","phone","email_id")
    
    val all_cols = df.columns
    val dup_cols = List("name","phone","email_id")
    val rem_cols = all_cols.diff(dup_cols)
    val dup_cols_str = dup_cols.mkString(",")
    val rem_cols_str = rem_cols.mkString(",")
    val dup_cols_length = dup_cols.length
    //val df_null_col = dup_cols.map( x => when(col(x).isNull,0).otherwise(1)).reduce( _ + _ )
    val df_null_col = dup_cols.map( x => when(col(x).isNull or regexp_replace(col(x),lit("""^\s*$"""),lit("")) === lit(""),0).otherwise(1)).reduce( _ + _ )
    val df_null = df.withColumn("null_count", df_null_col)
    df_null.createOrReplaceTempView("contact")
    df_null.show(false)
    
    val dup_cols_count_qry = " count(*) over(partition by " + dup_cols_str + " ) as cnt "
    val dup_cols_row_num_qry = " row_number() over(partition by " + dup_cols_str + " order by " + dup_cols_str + " ) as rwn "
    //val df2 = spark.sql("select *,"+ dup_cols_count_qry + "," + dup_cols_row_num_qry + " from contact " + " where null_count  = " + dup_cols_length )
    val df2 = spark.sql("select *,"+ dup_cols_count_qry + "," + dup_cols_row_num_qry + " from contact " + " where null_count  !=  0 ")
    df2.show(false)
    df2.createOrReplaceTempView("contact2")
    val df3 = spark.sql("select " +  dup_cols_str +  ", " + rem_cols_str + " from contact2 where cnt > 1 and rwn > 1")
    df3.show(false)
    
    0 讨论(0)
提交回复
热议问题