So I have a dataframe (or series) where there are always 4 occurrences of each of column \'A\', like this:
df = pd.DataFrame([[\'foo\'],
[
You'll need to create surrogate columns with groupby
+ cumcount
to deduplicate your rows, then include those columns when calling merge
:
a = df.assign(D=df.groupby('A').cumcount())
b = df_key.assign(D=df_key.groupby('A').cumcount())
a.merge(b, on=['A', 'D'], how='left').drop('D', 1)
A B C
0 foo 1.0 2.0
1 foo 3.0 4.0
2 foo NaN NaN
3 foo NaN NaN
4 bar 5.0 9.0
5 bar 2.0 4.0
6 bar 1.0 9.0
7 bar NaN NaN
Or you can just repeat the column A of df_key
the remaining number of times from df
.
s=df.A.value_counts()-df_key.A.value_counts()
pd.concat([df_key,pd.DataFrame({'A':s.index.repeat(s)})]).sort_values('A')
Out[469]:
A B C
2 bar 5.0 9.0
3 bar 2.0 4.0
4 bar 1.0 9.0
0 bar NaN NaN
0 foo 1.0 2.0
1 foo 3.0 4.0
1 foo NaN NaN
2 foo NaN NaN