I have a data frame called data
, which has a column Dates
like this,
Dates
0 2015-05-13 23:53:00
1 2015-05-13 23
If your Dates
column is a string:
data['Day'], data['Time'] = zip(*data.Dates.str.split())
>>> data
Dates Day Time
0 2015-05-13 23:53:00 2015-05-13 23:53:00
1 2015-05-13 23:53:00 2015-05-13 23:53:00
2 2015-05-13 23:33:00 2015-05-13 23:33:00
3 2015-05-13 23:33:00 2015-05-13 23:33:00
4 2015-05-13 23:33:00 2015-05-13 23:33:00
If it is a timestamp:
data['Day'], data['Time'] = zip(*[(d.date(), d.time()) for d in data.Dates])
If your series is s
, then this will create such a DataFrame:
pd.DataFrame({
'date': pd.to_datetime(s).dt.date,
'time': pd.to_datetime(s).dt.time})
as once you convert the series using pd.to_datetime, then the dt
member can be used to extract the parts.
Example
import pandas as pd
s = pd.Series(['2015-05-13 23:53:00', '2015-05-13 23:53:00'])
>>> pd.DataFrame({
'date': pd.to_datetime(s).dt.date,
'time': pd.to_datetime(s).dt.time})
date time
0 2015-05-13 23:53:00
1 2015-05-13 23:53:00
You can use operator.attrgetter
with pd.concat
to add an arbitrary number of datetime
attributes to your dataframe as separate series:
from operator import attrgetter
fields = ['date', 'time']
df = df.join(pd.concat(attrgetter(*fields)(df['Date'].dt), axis=1, keys=fields))
print(df)
Date date time
0 2015-05-13 23:53:00 2015-05-13 23:53:00
1 2015-01-13 15:23:00 2015-01-13 15:23:00
2 2016-01-13 03:33:00 2016-01-13 03:33:00
3 2018-02-13 20:13:25 2018-02-13 20:13:25
4 2017-05-12 06:52:00 2017-05-12 06:52:00
If type of column Dates
is string, convert it by to_datetime. Then you can use dt.date, dt.time and last drop original column Dates
:
print df['Dates'].dtypes
object
print type(df.at[0, 'Dates'])
<type 'str'>
df['Dates'] = pd.to_datetime(df['Dates'])
print df['Dates'].dtypes
datetime64[ns]
print df
Dates
0 2015-05-13 23:53:00
1 2015-05-13 23:53:00
2 2015-05-13 23:33:00
3 2015-05-13 23:30:00
4 2015-05-13 23:30:00
df['Date'] = df['Dates'].dt.date
df['Time'] = df['Dates'].dt.time
df = df.drop('Dates', axis=1)
print df
Date Time
0 2015-05-13 23:53:00
1 2015-05-13 23:53:00
2 2015-05-13 23:33:00
3 2015-05-13 23:30:00
4 2015-05-13 23:30:00