I will be happy to get some help.
I have the following problem:
I\'m given a list of numbers seq
and a target number and I need to write 2 thing
I have this modified code:
def subset_sum(seq, target):
left, right = seq[0], seq[1:]
return target in (0, left) or \
(bool(right) and (subset_sum(right, target - left) or subset_sum(right, target)))
def subset_sum_mem(seq, target, mem=None):
mem = mem or {}
key = (len(seq), target)
if key not in mem:
left, right = seq[0], seq[1:]
mem[key] = target in (0, left) or \
(bool(right) and (subset_sum_mem(right, target - left, mem) or subset_sum_mem(right, target, mem)))
return mem[key]
Can you provide some test cases this does not work for?
Just for reference, here's a solution using dynamic programming:
def positive_negative_sums(seq):
P, N = 0, 0
for e in seq:
if e >= 0:
P += e
else:
N += e
return P, N
def subset_sum(seq, s=0):
P, N = positive_negative_sums(seq)
if not seq or s < N or s > P:
return False
n, m = len(seq), P - N + 1
table = [[False] * m for x in xrange(n)]
table[0][seq[0]] = True
for i in xrange(1, n):
for j in xrange(N, P+1):
table[i][j] = seq[i] == j or table[i-1][j] or table[i-1][j-seq[i]]
return table[n-1][s]
This is how I'd write the subset_sum
:
def subset_sum(seq, target):
if target == 0:
return True
for i in range(len(seq)):
if subset_sum(seq[:i] + seq[i+1:], target - seq[i]):
return True
return False
It worked on a couple of examples:
>>> subset_sum([-1,1,5,4], 0))
True
>>> subset_sum([-1,1,5,4], 10)
True
>>> subset_sum([-1,1,5,4], 4)
True
>>> subset_sum([-1,1,5,4], -3)
False
>>> subset_sum([-1,1,5,4], -4)
False
To be honest I wouldn't know how to memoize it.
Old Edit: I removed the solution with any()
because after some tests I found out that to be slower!
Update: Just out of curiosity you could also use itertools.combinations:
from itertools import combinations
def com_subset_sum(seq, target):
if target == 0 or target in seq:
return True
for r in range(2, len(seq)):
for subset in combinations(seq, r):
if sum(subset) == target:
return True
return False
This can do better that the dynamic programming approach in some cases but in others it will hang (it's anyway better then the recursive approach).