Given a list of numbers, like this:
lst = [0, 10, 15, 17]
I\'d like a list that has elements from i -> i + 3
for all
Approach #1 : One approach based on broadcasted summation and then using np.unique
to get unique numbers -
np.unique(np.asarray(lst)[:,None] + np.arange(4))
Approach #2 : Another based on broadcasted summation and then masking -
def mask_app(lst, interval_len = 4):
arr = np.array(lst)
r = np.arange(interval_len)
ranged_vals = arr[:,None] + r
a_diff = arr[1:] - arr[:-1]
valid_mask = np.vstack((a_diff[:,None] > r, np.ones(interval_len,dtype=bool)))
return ranged_vals[valid_mask]
Runtime test
Original approach -
from collections import OrderedDict
def org_app(lst):
list(OrderedDict.fromkeys([y for x in lst for y in range(x, x + 4)]).keys())
Timings -
In [409]: n = 10000
In [410]: lst = np.unique(np.random.randint(0,4*n,(n))).tolist()
In [411]: %timeit org_app(lst)
...: %timeit np.unique(np.asarray(lst)[:,None] + np.arange(4))
...: %timeit mask_app(lst, interval_len = 4)
...:
10 loops, best of 3: 32.7 ms per loop
1000 loops, best of 3: 1.03 ms per loop
1000 loops, best of 3: 671 µs per loop
In [412]: n = 100000
In [413]: lst = np.unique(np.random.randint(0,4*n,(n))).tolist()
In [414]: %timeit org_app(lst)
...: %timeit np.unique(np.asarray(lst)[:,None] + np.arange(4))
...: %timeit mask_app(lst, interval_len = 4)
...:
1 loop, best of 3: 350 ms per loop
100 loops, best of 3: 14.7 ms per loop
100 loops, best of 3: 9.73 ms per loop
The bottleneck with the two posted approaches seems like is with the conversion to array
, though that seems to be paying off well afterwards. Just to give a sense of the time spent on the conversion for the last dataset -
In [415]: %timeit np.array(lst)
100 loops, best of 3: 5.6 ms per loop