Multiple Logistic Regression with Interaction between Quantitative and Qualitative Explanatory Variables

前端 未结 2 2036
醉话见心
醉话见心 2021-01-18 20:03

As a follow up to this question, I fitted the Multiple Logistic Regression with Interaction between Quantitative and Qualitative Explanatory Variables. MWE is given below:

相关标签:
2条回答
  • 2021-01-18 20:42

    You use the drc package to fit logistic dose-response models.

    First fit the model

    require(drc)
    mod <- drm(Kill/Total ~ Conc, 
               curveid = Type, 
               weights = Total, 
               data = df, 
               fct =  L.4(fixed = c(NA, 0, 1, NA)), 
               type = 'binomial')
    

    Here curveid=specifies the grouping of the data and fct= specifies a 4 parameter logistic function, with parameters for lower and upper bond fixed at 0 and 1.

    Note the differences to glm are negligible:

    df2 <- with(data=df,
                expand.grid(Conc=seq(from=min(Conc), to=max(Conc), length=51),
                            Type=levels(Type)))
    df2$Pred <- predict(object=mod, newdata = df2)
    

    Here's a histgramm of the differences to the glm prediction

    hist(df2$Pred - df1$Pred)
    

    Estimate Effective Doses (and CI) from the model

    This is easy with the ED() function:

    ED(mod, c(50, 90, 95), interval = 'delta')
    
    Estimated effective doses
    (Delta method-based confidence interval(s))
    
         Estimate Std. Error   Lower  Upper
    A:50   9.1468     2.3257  4.5885 13.705
    A:90  39.8216     4.3444 31.3068 48.336
    A:95  50.2532     5.8773 38.7338 61.773
    B:50  16.2936     2.2893 11.8067 20.780
    B:90  52.0214     6.0556 40.1527 63.890
    B:95  64.1714     8.0068 48.4784 79.864
    C:50  12.5477     1.5568  9.4963 15.599
    C:90  33.4740     2.7863 28.0129 38.935
    C:95  40.5904     3.6006 33.5334 47.648
    

    For each group we get ED50, ED90 & ED95 with CI.

    0 讨论(0)
  • 2021-01-18 20:42

    Your link function of choice (\eta= X\hat\beta) has variance for a new observation (x_0): V_{x_0}=x_0^T(X^TWX)^{-1}x_0

    So, for a set of candidate doses, we can predict the expected percentage of deaths using the inverse function:

    newdata= data.frame(Type=rep(x=LETTERS[1:3], each=5),
                        Conc=rep(x=seq(from=0, to=40, by=10), times=3))
    mm <- model.matrix(fm1, newdata)
    
    # get link on link terms (could also use predict)
    eta0 <- apply(mm, 1, function(i) sum(i * coef(fm1)))
    
    # inverse logit function
    ilogit <- function(x) return(exp(x) / (1+ exp(x)))
    
    # predicted probs
    ilogit(eta0)
    
    
    # for comfidence intervals we can use a normal approximation
    lethal_dose <- function(mod, newdata, alpha) {
      qn <- qnorm(1 - alpha /2)
      mm <- model.matrix(mod, newdata)
      eta0 <- apply(mm, 1, function(i) sum(i * coef(fm1)))
      var_mod <- vcov(mod)
    
      se <- apply(mm, 1, function(x0, var_mod) {
        sqrt(t(x0) %*% var_mod %*% x0)}, var_mod= var_mod)
    
      out <- cbind(ilogit(eta0 - qn * se),
                   ilogit(eta0),
                   ilogit(eta0 + qn * se))
      colnames(out) <- c("LB_CI", "point_est", "UB_CI")
    
      return(list(newdata=newdata,
                  eff_dosage= out))
    }
    
    lethal_dose(fm1, newdata, alpha= 0.05)$eff_dosage
    $eff_dosage
           LB_CI point_est     UB_CI
    1  0.2465905 0.3418240 0.4517820
    2  0.4361703 0.5152749 0.5936215
    3  0.6168088 0.6851225 0.7462674
    4  0.7439073 0.8166343 0.8722545
    5  0.8315325 0.9011443 0.9439316
    6  0.1863738 0.2685402 0.3704385
    7  0.3289003 0.4044270 0.4847691
    8  0.4890420 0.5567386 0.6223914
    9  0.6199426 0.6990808 0.7679095
    10 0.7207340 0.8112133 0.8773662
    11 0.1375402 0.2112382 0.3102215
    12 0.3518053 0.4335213 0.5190198
    13 0.6104540 0.6862145 0.7531978
    14 0.7916268 0.8620545 0.9113443
    15 0.8962097 0.9469715 0.9736370
    

    Rather than doing this manually, you could also manipulate:

    predict.glm(fm1, newdata, se=TRUE)$se.fit

    0 讨论(0)
提交回复
热议问题