As a follow up to this question, I fitted the Multiple Logistic Regression with Interaction between Quantitative and Qualitative Explanatory Variables. MWE is given below:
You use the drc
package to fit logistic dose-response models.
First fit the model
require(drc)
mod <- drm(Kill/Total ~ Conc,
curveid = Type,
weights = Total,
data = df,
fct = L.4(fixed = c(NA, 0, 1, NA)),
type = 'binomial')
Here curveid=
specifies the grouping of the data and fct=
specifies a 4 parameter logistic function, with parameters for lower and upper bond fixed at 0 and 1.
Note the differences to glm
are negligible:
df2 <- with(data=df,
expand.grid(Conc=seq(from=min(Conc), to=max(Conc), length=51),
Type=levels(Type)))
df2$Pred <- predict(object=mod, newdata = df2)
Here's a histgramm of the differences to the glm prediction
hist(df2$Pred - df1$Pred)
Estimate Effective Doses (and CI) from the model
This is easy with the ED()
function:
ED(mod, c(50, 90, 95), interval = 'delta')
Estimated effective doses
(Delta method-based confidence interval(s))
Estimate Std. Error Lower Upper
A:50 9.1468 2.3257 4.5885 13.705
A:90 39.8216 4.3444 31.3068 48.336
A:95 50.2532 5.8773 38.7338 61.773
B:50 16.2936 2.2893 11.8067 20.780
B:90 52.0214 6.0556 40.1527 63.890
B:95 64.1714 8.0068 48.4784 79.864
C:50 12.5477 1.5568 9.4963 15.599
C:90 33.4740 2.7863 28.0129 38.935
C:95 40.5904 3.6006 33.5334 47.648
For each group we get ED50, ED90 & ED95 with CI.
Your link function of choice (\eta= X\hat\beta) has variance for a new observation (x_0): V_{x_0}=x_0^T(X^TWX)^{-1}x_0
So, for a set of candidate doses, we can predict the expected percentage of deaths using the inverse function:
newdata= data.frame(Type=rep(x=LETTERS[1:3], each=5),
Conc=rep(x=seq(from=0, to=40, by=10), times=3))
mm <- model.matrix(fm1, newdata)
# get link on link terms (could also use predict)
eta0 <- apply(mm, 1, function(i) sum(i * coef(fm1)))
# inverse logit function
ilogit <- function(x) return(exp(x) / (1+ exp(x)))
# predicted probs
ilogit(eta0)
# for comfidence intervals we can use a normal approximation
lethal_dose <- function(mod, newdata, alpha) {
qn <- qnorm(1 - alpha /2)
mm <- model.matrix(mod, newdata)
eta0 <- apply(mm, 1, function(i) sum(i * coef(fm1)))
var_mod <- vcov(mod)
se <- apply(mm, 1, function(x0, var_mod) {
sqrt(t(x0) %*% var_mod %*% x0)}, var_mod= var_mod)
out <- cbind(ilogit(eta0 - qn * se),
ilogit(eta0),
ilogit(eta0 + qn * se))
colnames(out) <- c("LB_CI", "point_est", "UB_CI")
return(list(newdata=newdata,
eff_dosage= out))
}
lethal_dose(fm1, newdata, alpha= 0.05)$eff_dosage
$eff_dosage
LB_CI point_est UB_CI
1 0.2465905 0.3418240 0.4517820
2 0.4361703 0.5152749 0.5936215
3 0.6168088 0.6851225 0.7462674
4 0.7439073 0.8166343 0.8722545
5 0.8315325 0.9011443 0.9439316
6 0.1863738 0.2685402 0.3704385
7 0.3289003 0.4044270 0.4847691
8 0.4890420 0.5567386 0.6223914
9 0.6199426 0.6990808 0.7679095
10 0.7207340 0.8112133 0.8773662
11 0.1375402 0.2112382 0.3102215
12 0.3518053 0.4335213 0.5190198
13 0.6104540 0.6862145 0.7531978
14 0.7916268 0.8620545 0.9113443
15 0.8962097 0.9469715 0.9736370
Rather than doing this manually, you could also manipulate:
predict.glm(fm1, newdata, se=TRUE)$se.fit