I want to create my dataframe which looks like this:
employeeId firstName lastName emailAddress isDependent employeeIdTypeCode entityCode sour
Not really a Pandas solution but kinds works:
Starts from your result
dataframe
from collections import defaultdict
import json
result = 'your data frame'
dicted = defaultdict(dict)
for r in result.values.tolist():
identifierValue, firstName, lastName, emailAddress,isDependent,\
identityTypeCode, entityCode, sourceCode,roleCode = r
tupled_criteria = (firstName,lastName,emailAddress)
if dicted[tupled_criteria].get("individualInfo"):
pass
else:
dicted[tupled_criteria]["individualInfo"] = {}
dicted[tupled_criteria]["individualInfo"]['entityCode'] = entityCode
dicted[tupled_criteria]["individualInfo"]['soruceCode'] = sourceCode
dicted[tupled_criteria]["individualInfo"]['roleCode'] = roleCode
dicted[tupled_criteria]["individualInfo"]['isDependent'] = isDependent
if dicted[tupled_criteria]["individualInfo"].get("individualIdentifier"):
pass
else:
dicted[tupled_criteria]["individualInfo"]["individualIdentifier"] = []
dicted[tupled_criteria]["individualInfo"]["individualIdentifier"]\
.append({"identityTypeCode":identityTypeCode,
"identifierValue":identifierValue,
"profileInfo":{
"firstName":firstName,
"lastName":lastName,
"emailAddress":emailAddress}})
for k,v in dicted.items():
print(k,'\n',json.dumps(v),'\n\n')
Perhaps you can iterate over a group by, then do another iteration for each row within that group. Thus, creating a nested dictionary structure:
This explains one way going through with it:
import pandas as pd
df = pd.DataFrame({"entityCode":[1,1,3,3],"sourceCode":[4,4,6,6],'identityTypeCode':[7,8,9,10]})
results = []
for i, sub_df in df.groupby(["entityCode","sourceCode"]):
entityCode, sourceCode = i
d = {}
d["individualInfo"] = {"entityCode":entityCode, "sourceCode":sourceCode}
sub_result = []
for _, row in sub_df[["identityTypeCode"]].drop_duplicates().iterrows():
sub_result.append(row.to_dict())
d["individualIdentifier"] = sub_result
results.append(d)
results
which returns something like this:
[{'individualInfo': {'entityCode': 1, 'sourceCode': 4},
'individualIdentifier': [{'identityTypeCode': 7}, {'identityTypeCode': 8}]},
{'individualInfo': {'entityCode': 3, 'sourceCode': 6},
'individualIdentifier': [{'identityTypeCode': 9}, {'identityTypeCode': 10}]}]
afterwards, you can convert the dictionary to json.
It sounds like the most sensible way to pull this off is:
info_dict = df.set_index(['identifierValue', 'identifierValue']).to_dict('index')
Then every time you get to profileInfo
in your JSON, you can reference the info_dict
above with the appropriate ('identifierValue', 'identifierValue')` key pair
I'm confused about what your desired formatting is, but this is a start.