I have used pd.pivot_table
in pandas dataframe, and the columns names becomes tuples like (\'A1\', \'B1\'), (\'A1\', \'B2\')...
and I want them to
Use list comprehension
:
df.columns = ['{}_{}'.format(x[0], x[1]) for x in df.columns]
print(df)
A1_B1 A2_B1 A1_B2 A2_B2
0 0 1 2 3
1 4 5 6 7
Or:
df.columns = ['_'.join(x) for x in df.columns]
print(df)
A1_B1 A2_B1 A1_B2 A2_B2
0 0 1 2 3
1 4 5 6 7
I used this approach:
mydic = dict()
for i,var in enumerate(df.columns):
if isinstance(var, tuple):
mydic[var] = '{}_{}'.format(var[0], var[1])
df.rename(columns = mydic)
This allows me to also handle the fact that the second input in my tuple was an integer which had become a float (and been appended an annoying ".0" decimal), by instead rounding off and specifying an integer
mydic[var] = '{}_{:d}'.format(var[0], round(var[1]))
setup
df = pd.DataFrame(
np.arange(8).reshape(2, 4),
columns=[('A1', 'B1'), ('A2', 'B1'), ('A1', 'B2'), ('A2', 'B2')])
print(df)
(A1, B1) (A2, B1) (A1, B2) (A2, B2)
0 0 1 2 3
1 4 5 6 7
rename
df.rename(columns='_'.join, inplace=True)
print(df)
A1_B1 A2_B1 A1_B2 A2_B2
0 0 1 2 3
1 4 5 6 7
map
df.columns = df.columns.map('_'.join)
print(df)
A1_B1 A2_B1 A1_B2 A2_B2
0 0 1 2 3
1 4 5 6 7
You can use df.DataFrame.Index.map
for this:
df1.columns.map(lambda t: t[0] + "_" + t[1])
You might need to iterate.
final=[]
for x in df.columns.values:
final.append(x[0]+'_'+x[1])
df.columns.values = final