> x <- array(-10:10, dim=c(4,5))
> x
[,1] [,2] [,3] [,4] [,5]
[1,] -10 -6 -2 2 6
[2,] -9 -5 -1 3 7
[3,] -8 -4 0 4 8
Use pmax
:
pmax(x,0)
# [,1] [,2] [,3] [,4] [,5]
#[1,] 0 0 0 2 6
#[2,] 0 0 0 3 7
#[3,] 0 0 0 4 8
#[4,] 0 0 1 5 9
It appears that the order of the arguments to pmax()
affects the class of what is returned when the input is a matrix:
pmax(0,x)
[1] 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9
pmax(x,0)
[,1] [,2] [,3] [,4] [,5]
[1,] 0 0 0 2 6
[2,] 0 0 0 3 7
[3,] 0 0 0 4 8
[4,] 0 0 1 5 9
You can use R's indexing function [
to do this directly:
x <- array(-10:10, dim=c(4,5))
x[x < 0] <- 0
This works because x < 0
creates a logical matrix output:
x < 0
[,1] [,2] [,3] [,4] [,5]
[1,] TRUE TRUE TRUE FALSE FALSE
[2,] TRUE TRUE TRUE FALSE FALSE
[3,] TRUE TRUE FALSE FALSE FALSE
[4,] TRUE TRUE FALSE FALSE FALSE
And the resulting matrix is:
[,1] [,2] [,3] [,4] [,5]
[1,] 0 0 0 2 6
[2,] 0 0 0 3 7
[3,] 0 0 0 4 8
[4,] 0 0 1 5 9
The timing between the two methods is surprisingly similar. Here's a larger example illustrating the comparable timings:
xbigC <- xbigE <- matrix(sample(-100:100, 1e8, TRUE), ncol = 1e4)
system.time(xbigC[xbigC < 0] <- 0)
#---
user system elapsed
4.56 0.37 4.93
system.time(xbigE <- pmax(xbigE,0))
#---
user system elapsed
4.10 0.51 4.62
all.equal(xbigC, xbigE)
#---
[1] TRUE