How to remove multiple columns that end with same text in Pandas?

前端 未结 5 1599
一生所求
一生所求 2021-01-18 03:56

I\'m trying to remove a group of columns from a dataset. All of the variables to remove end with the text \"prefix\".

I did manage to \"collect\' them into a group

相关标签:
5条回答
  • 2021-01-18 04:39

    for the sake of completeness:

    In [306]: df
    Out[306]:
       prefixcol1  col2prefix  col3prefix  colN
    0           1           1           1     1
    1           2           2           2     2
    2           3           3           3     3
    
    In [307]: df.loc[:, ~df.columns.str.contains('prefix$')]
    Out[307]:
       prefixcol1  colN
    0           1     1
    1           2     2
    2           3     3
    

    or another variant:

    In [388]: df.select(lambda x: re.search(r'prefix$', str(x)) is None, axis=1)
    Out[388]:
       prefixcol1  colN
    0           1     1
    1           2     2
    2           3     3
    
    0 讨论(0)
  • 2021-01-18 04:45

    using filter and regex

    df.filter(regex=r'^((?!prefix).)*$')
    

    Demo

    df = pd.DataFrame(np.random.rand(2, 6),
                      columns=['oneprefix', 'one',
                               'twoprefix', 'two',
                               'threeprefix', 'three'])
    
    df.filter(regex=r'^((?!prefix).)*$')
    

    where:

    df
    


    Timing

    All are about the same

    0 讨论(0)
  • 2021-01-18 04:47
    df2 = df.loc[:, ~df.columns.str.endswith('prefix')]
    
    0 讨论(0)
  • 2021-01-18 04:47

    I think you need:

    not_prefix_cols= [col for col in df.columns if not 'prefix' in col]
    df2[not_prefix_cols]
    

    But better is use:

    prefix_cols= [col for col in df.columns if not col.endswith('prefix')]
    print (df[prefix_cols])
    

    Sample:

    import pandas as pd
    
    df = pd.DataFrame({'prefixone' : pd.Series([1, 2, 3, 4]),
                       'twoprefix' : pd.Series([20, 30, 40, 50]),
                       'two1prefix' : pd.Series([20, 30, 40, 50])})
    
    print (df)
       prefixone  two1prefix  twoprefix
    0          1          20         20
    1          2          30         30
    2          3          40         40
    3          4          50         50
    
    prefix_cols= [col for col in df.columns if not col.endswith('prefix')]
    print (df[prefix_cols])
       prefixone
    0          1
    1          2
    2          3
    3          4
    
    0 讨论(0)
  • 2021-01-18 04:51
    df2 = df.drop([col for col in df.columns if 'prefix' in col],axis=1)
    
    0 讨论(0)
提交回复
热议问题