I am running Python 3.6 and Pandas 0.19.2 and have a DataFrame which looks as follows:
Name Chain Food Healthy
George McDonalds b
Solution using dictionary comprehension and groupby
:
{n: grp.loc[n].to_dict('index')
for n, grp in df.set_index(['Name', 'Chain']).groupby(level='Name')}
{'George': {'KFC': {'Food': 'chicken', 'Healthy': False},
'McDonalds': {'Food': 'burger', 'Healthy': False}},
'John': {'McDonalds': {'Food': 'salad', 'Healthy': True},
'Wendys': {'Food': 'burger', 'Healthy': False}}}
Solution using defaultdict:
from collections import defaultdict
d = defaultdict(dict)
for i, row in df.iterrows():
d[row.Name][row.Chain] = row.drop(['Name', 'Chain']).to_dict()
dict(d)
{'George': {'KFC': {'Food': 'chicken', 'Healthy': False},
'McDonalds': {'Food': 'burger', 'Healthy': False}},
'John': {'McDonalds': {'Food': 'salad', 'Healthy': True},
'Wendys': {'Food': 'burger', 'Healthy': False}}}
I think you was very close.
Use groupby and to_dict:
df = df.groupby('Name')[['Chain','Food','Healthy']]
.apply(lambda x: x.set_index('Chain').to_dict(orient='index'))
.to_dict()
print (df)
{'George': {'KFC': {'Healthy': False, 'Food': 'chicken'},
'McDonalds': {'Healthy': False, 'Food': 'burger'}},
'John': {'McDonalds': {'Healthy': True, 'Food': 'salad'},
'Wendys': {'Healthy': False, 'Food': 'burger'}}}