Python has (1,)
for a single element tuple. In Scala, (1,2)
works for Tuple2(1,2)
but we must use Tuple1(1)
to get a sin
You could, of course, add an implicit conversion to your API:
implicit def value2tuple[A](x: A) = Tuple1(x)
I do find it odd that Tuple1.toString
includes the trailing comma:
scala> Tuple1(1)
res0: (Int,) = (1,)
You can define an implicit conversion:
implicit def value2tuple[T](x: T): Tuple1[T] = Tuple1(x)
The implicit conversion will only apply if the argument's static type does not already conform to the method parameter's type. Assuming your method takes a Product
argument
def m(v: Product) = // ...
the conversion will apply to a non-product value but will not apply to a Tuple2
, for example. Warning: all case classes extend the Product
trait, so the conversion will not apply to them either. Instead, the product elements will be the constructor parameters of the case class.
Product
is the least upper bound of the TupleX
classes, but you can use a type class if you want to apply the implicit Tuple1 conversion to all non-tuples:
// given a Tupleable[T], you can call apply to convert T to a Product
sealed abstract class Tupleable[T] extends (T => Product)
sealed class ValueTupler[T] extends Tupleable[T] {
def apply(x: T) = Tuple1(x)
}
sealed class TupleTupler[T <: Product] extends Tupleable[T] {
def apply(x: T) = x
}
// implicit conversions
trait LowPriorityTuple {
// this provides a Tupleable[T] for any type T, but is the
// lowest priority conversion
implicit def anyIsTupleable[T]: Tupleable[T] = new ValueTupler
}
object Tupleable extends LowPriorityTuple {
implicit def tuple2isTuple[T1, T2]: Tupleable[Tuple2[T1,T2]] = new TupleTupler
implicit def tuple3isTuple[T1, T2, T3]: Tupleable[Tuple3[T1,T2,T3]] = new TupleTupler
// ... etc ...
}
You can use this type class in your API as follows:
def m[T: Tupleable](v: T) = {
val p = implicitly[Tupleable[T]](v)
// ... do something with p
}
If you have your method return the product, you can see how the conversions are being applied:
scala> def m[T: Tupleable](v: T) = implicitly[Tupleable[T]](v)
m: [T](v: T)(implicit evidence$1: Tupleable[T])Product
scala> m("asdf") // as Tuple1
res12: Product = (asdf,)
scala> m(Person("a", "n")) // also as Tuple1, *not* as (String, String)
res13: Product = (Person(a,n),)
scala> m((1,2)) // as Tuple2
res14: Product = (1,2)
Python is not statically typed, so tuples there act more like fixed-size collections. That is not true of Scala, where each element of a tuple has a distinct type. Tuples, in Scala, doesn't have the same uses as in Python.